Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning
- URL: http://arxiv.org/abs/2407.00082v1
- Date: Mon, 24 Jun 2024 14:38:04 GMT
- Title: Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning
- Authors: Xiao Han, Chen Zhu, Xiao Hu, Chuan Qin, Xiangyu Zhao, Hengshu Zhu,
- Abstract summary: Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking.
Users tend to adjust their job preferences to secure employment opportunities continually.
We propose a novel session-based framework, BISTRO, to model user preference through fusion learning of semantic and behavioral information.
- Score: 49.262407095098645
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.
Related papers
- Dynamic In-Context Learning from Nearest Neighbors for Bundle Generation [33.25497578184437]
This paper explores two interrelated tasks, i.e., personalized bundle generation and the underlying intent inference based on users' interactions in a session.
We introduce a dynamic in-context learning paradigm, which enables ChatGPT to seek tailored and dynamic lessons from closely related sessions.
We develop (1) a self-correction strategy to foster mutual improvement in both tasks without supervision signals; and (2) an auto-feedback mechanism to recurrently offer dynamic supervision.
arXiv Detail & Related papers (2023-12-26T08:24:24Z) - Context-aware Session-based Recommendation with Graph Neural Networks [6.825493772727133]
We propose CARES, a novel context-aware session-based recommendation model with graph neural networks.
We first construct a multi-relation cross-session graph to connect items according to intra- and cross-session item-level contexts.
To encode the variation of user interests, we design personalized item representations.
arXiv Detail & Related papers (2023-10-14T14:29:52Z) - Multi-behavior Self-supervised Learning for Recommendation [36.42241501002167]
We propose a Multi-Behavior Self-Supervised Learning (MBSSL) framework together with an adaptive optimization method.
Specifically, we devise a behavior-aware graph neural network incorporating the self-attention mechanism to capture behavior multiplicity and dependencies.
Experiments on five real-world datasets demonstrate the consistent improvements obtained by MBSSL over ten state-of-the art (SOTA) baselines.
arXiv Detail & Related papers (2023-05-22T15:57:32Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - From Implicit to Explicit feedback: A deep neural network for modeling
sequential behaviours and long-short term preferences of online users [3.464871689508835]
Implicit and explicit feedback have different roles for a useful recommendation.
We go from the hypothesis that a user's preference at a time is a combination of long-term and short-term interests.
arXiv Detail & Related papers (2021-07-26T16:59:20Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
In the Click-Through Rate (CTR) prediction scenario, user's sequential behaviors are well utilized to capture the user interest.
Existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction.
We propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features.
arXiv Detail & Related papers (2020-12-13T05:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.