論文の概要: AI-Driven Skin Cancer Diagnosis: Grad-CAM and Expert Annotations for Enhanced Interpretability
- arxiv url: http://arxiv.org/abs/2407.00104v1
- Date: Thu, 27 Jun 2024 07:33:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:30:11.876501
- Title: AI-Driven Skin Cancer Diagnosis: Grad-CAM and Expert Annotations for Enhanced Interpretability
- Title(参考訳): AIによる皮膚がん診断 : Grad-CAMと解釈可能性向上のためのエキスパートアノテーション
- Authors: Iván Matas, Carmen Serrano, Francisca Silva, Amalia Serrano, Tomás Toledo-Pastrana, Begoña Acha,
- Abstract要約: テレダーマトロジーによるBCCの診断に対する解釈可能なサポートを提供するために、AIツールが開発された。
その結果,分類精度と解釈可能性に大きな改善が認められた。
- 参考スコア(独自算出の注目度): 0.5937476291232799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An AI tool has been developed to provide interpretable support for the diagnosis of BCC via teledermatology, thus speeding up referrals and optimizing resource utilization. The interpretability is provided in two ways: on the one hand, the main BCC dermoscopic patterns are found in the image to justify the BCC/Non BCC classification. Secondly, based on the common visual XAI Grad-CAM, a clinically inspired visual explanation is developed where the relevant features for diagnosis are located. Since there is no established ground truth for BCC dermoscopic features, a standard reference is inferred from the diagnosis of four dermatologists using an Expectation Maximization (EM) based algorithm. The results demonstrate significant improvements in classification accuracy and interpretability, positioning this approach as a valuable tool for early BCC detection and referral to dermatologists. The BCC/non-BCC classification achieved an accuracy rate of 90%. For Clinically-inspired XAI results, the detection of BCC patterns useful to clinicians reaches 99% accuracy. As for the Clinically-inspired Visual XAI results, the mean of the Grad-CAM normalized value within the manually segmented clinical features is 0.57, while outside this region it is 0.16. This indicates that the model struggles to accurately identify the regions of the BCC patterns. These results prove the ability of the AI tool to provide a useful explanation.
- Abstract(参考訳): テレダーマトロジーによるBCC診断の解釈支援を提供するためのAIツールが開発され、参照を高速化し、リソース利用を最適化する。
一方、BCC/NonのBCC分類を正当化するために、画像にはメインのBCC皮膚内視鏡パターンが認められる。
第2に、一般的なXAI Grad-CAMに基づいて、臨床にインスパイアされた視覚的説明が、診断に関係した特徴がある場所で開発されている。
BCCの皮膚内視鏡的特徴には確固たる根拠がないため、期待最大化法(EM)に基づくアルゴリズムを用いて4人の皮膚科医の診断から基準基準が推測される。
以上の結果より, 早期BCC検出と皮膚科医への紹介に有効な方法として, 分類精度と解釈可能性に大きな改善が認められた。
BCC/非BCC分類は90%の精度を達成した。
臨床に着想を得たXAIでは,臨床に有用なBCCパターンが99%の精度で検出された。
臨床にインスパイアされた視覚XAIの結果は、手動分割された臨床特徴におけるGrad-CAM正規化値の平均は0.57であり、この領域以外では0.16である。
これは、モデルがBCCパターンの領域を正確に識別するのに苦労していることを示している。
これらの結果は、AIツールが有用な説明を提供する能力を証明する。
関連論文リスト
- Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans [2.900410045439515]
放射線医の間では, 内皮-皮下脂肪比は, ITBとCDの鑑別における代用バイオマーカーとして認識されている。
本稿では,この比率計算を自動化するために,皮下脂肪の自動分離のための新しい2次元画像コンピュータビジョンアルゴリズムを提案する。
ITB, CD, 正常患者のサンプルを用いて, CTEスキャンのデータセットを用いてResNet10モデルを訓練し, 75%の精度を得た。
論文 参考訳(メタデータ) (2024-10-23T17:05:27Z) - Chest X-ray Image Classification: A Causal Perspective [49.87607548975686]
本稿では,CXR分類問題に対処する因果的アプローチを提案し,構造因果モデル(SCM)を構築し,CXR分類に有効な視覚情報を選択するためにバックドア調整を用いる。
実験の結果,提案手法はオープンソースNIH ChestX-ray14の分類性能に優れていた。
論文 参考訳(メタデータ) (2023-05-20T03:17:44Z) - Towards More Transparent and Accurate Cancer Diagnosis with an
Unsupervised CAE Approach [1.6704594205447996]
CBMIR(Content-Based Medical Image Retrieval)を利用したデジタル病理診断
UCBMIRは従来のがん診断ワークフローを再現し、WSIベースの診断結論における病理医を支援するための信頼性の高い方法を提供する。
論文 参考訳(メタデータ) (2023-05-19T15:04:16Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
近年の乳房画像解析のためのニューラルネットワークモデルの出現は、コンピュータ支援診断における画期的な進歩である。
本研究は,CESMリコンビネート画像に対する深層学習に基づくコンピュータ支援診断開発を提案し,病変の検出と症例の分類を行う。
論文 参考訳(メタデータ) (2022-07-20T06:49:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
本稿では,その出力の確実性を推定するために,最先端自動品質制御(QC)手法の解析を行う。
磁気共鳴画像データにおける白色物質の超強度(WMH)を識別する脳画像分割タスクにおける最も有望なアプローチを検証した。
論文 参考訳(メタデータ) (2021-12-06T16:30:43Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC) [2.031570465477242]
unetアーキテクチャに基づく複数のモデルを用いた意味セグメンテーションによる基底細胞癌(bcc)の検出に焦点を当てた。
unetネットワークの最初の2つの異なるエンコーダと2つの追加のトレーニング戦略を分析した。
最高のモデルは、テストセット上の96%、精度、感度、および特異性を達成します。
論文 参考訳(メタデータ) (2021-03-05T15:39:55Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。