論文の概要: A Case Study on Contextual Machine Translation in a Professional Scenario of Subtitling
- arxiv url: http://arxiv.org/abs/2407.00108v1
- Date: Thu, 27 Jun 2024 11:20:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:30:11.865230
- Title: A Case Study on Contextual Machine Translation in a Professional Scenario of Subtitling
- Title(参考訳): サブタイリングの専門シナリオにおける文脈機械翻訳の一事例
- Authors: Sebastian Vincent, Charlotte Prescott, Chris Bayliss, Chris Oakley, Carolina Scarton,
- Abstract要約: 本稿では,テレビ字幕翻訳の専門的シナリオにおける機械翻訳(MT)のメリットを検討するために実施した産業事例について報告する。
その結果,文脈認識モデルであるMSCueの出力を補正する際の文脈関連エラーが有意に少ないことがわかった。
また, MTで連続的に観察される有意なギャップとして, 文脈的不適切さが強調される, 採用後調査の結果も提示する。
- 参考スコア(独自算出の注目度): 3.925328332747599
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Incorporating extra-textual context such as film metadata into the machine translation (MT) pipeline can enhance translation quality, as indicated by automatic evaluation in recent work. However, the positive impact of such systems in industry remains unproven. We report on an industrial case study carried out to investigate the benefit of MT in a professional scenario of translating TV subtitles with a focus on how leveraging extra-textual context impacts post-editing. We found that post-editors marked significantly fewer context-related errors when correcting the outputs of MTCue, the context-aware model, as opposed to non-contextual models. We also present the results of a survey of the employed post-editors, which highlights contextual inadequacy as a significant gap consistently observed in MT. Our findings strengthen the motivation for further work within fully contextual MT.
- Abstract(参考訳): フィルムメタデータなどのテキスト外のコンテキストを機械翻訳(MT)パイプラインに組み込むことは、最近の研究で自動評価によって示されるように、翻訳品質を向上させることができる。
しかし、こうしたシステムによる産業への影響はいまだに証明されていない。
本稿では,テレビ字幕翻訳の専門的シナリオにおけるMTのメリットを,テキスト外文脈の活用が後編集に与える影響に焦点をあてた産業ケーススタディについて報告する。
その結果、文脈認識モデルであるMCCueの出力を非文脈モデルと比較すると、文脈関連エラーが著しく少ないことがわかった。
また, MTにおける文脈の不適切さを, MTで一貫して観察される重要なギャップとして強調し, 完全文脈的MTにおける更なる作業の動機を強めた。
関連論文リスト
- Understanding and Addressing the Under-Translation Problem from the Perspective of Decoding Objective [72.83966378613238]
最新のニューラル・マシン・トランスレーション(NMT)システムでは、アンダー・トランスレーションとオーバー・トランスレーションの2つの課題が残っている。
我々は,NMTにおけるアンダートランスレーションの根本原因を詳細に分析し,デコード目的の観点から解説する。
本研究は,低翻訳の検知器としてEOS(End Of Sentence)予測の信頼性を活用し,低翻訳のリスクが高い候補を罰する信頼性に基づくペナルティを強化することを提案する。
論文 参考訳(メタデータ) (2024-05-29T09:25:49Z) - Context-aware Neural Machine Translation for English-Japanese Business
Scene Dialogues [14.043741721036543]
本稿では,日英ビジネス対話翻訳における現在のニューラル・マシン・トランスフォーメーション(NMT)モデルの性能向上について検討する。
本稿では,話者のターンやシーンタイプなどの外部情報を符号化する新しいコンテキストトークンを提案する。
我々は,先行文と外部文脈(CXMIは文脈サイズを増大させる)の両方をモデルに利用し,敬語翻訳のより焦点を絞った分析を行う。
論文 参考訳(メタデータ) (2023-11-20T18:06:03Z) - Discourse Centric Evaluation of Machine Translation with a Densely
Annotated Parallel Corpus [82.07304301996562]
本稿では,江らが導入した大規模並列コーパスBWBに基づいて,リッチな談話アノテーションを用いた新しいデータセットを提案する。
ソース言語とターゲット言語の談話構造と類似点と相違点について検討する。
我々はMT出力が人間の翻訳と基本的に異なることを発見した。
論文 参考訳(メタデータ) (2023-05-18T17:36:41Z) - Tackling Ambiguity with Images: Improved Multimodal Machine Translation
and Contrastive Evaluation [72.6667341525552]
本稿では,ニューラルアダプターとガイド付き自己注意機構を用いた,強いテキストのみのMTモデルに基づく新しいMT手法を提案する。
また,不明瞭な文とその翻訳が可能なコントラスト型多モーダル翻訳評価セットであるCoMMuTEについても紹介する。
提案手法は, 標準英語-フランス語, 英語-ドイツ語, 英語-チェコ語のベンチマークにおいて, 強いテキストのみのモデルと比較して, 競争力のある結果が得られる。
論文 参考訳(メタデータ) (2022-12-20T10:18:18Z) - Supervised Visual Attention for Simultaneous Multimodal Machine
Translation [47.18251159303909]
本稿では,トランスフォーマーを用いた最初の同時機械翻訳(MMT)アーキテクチャを提案する。
我々は、ラベル付きフレーズ領域アライメントを用いて視覚的注意機構を誘導する補助的な監視信号を用いて、このモデルを拡張する。
その結果,教師付き視覚的注意はMTモデルの翻訳品質を常に向上させることがわかった。
論文 参考訳(メタデータ) (2022-01-23T17:25:57Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
談話の適切な処理は機械翻訳(MT)の品質に大きく貢献する
文脈認識型MTにおける最近の研究は、評価中に少量の談話現象を標的にしようとしている。
談話現象のモデル性能を識別・評価するタグの集合である,多言語談話認識ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-09-15T17:29:30Z) - Contextual Neural Machine Translation Improves Translation of Cataphoric
Pronouns [50.245845110446496]
本研究では,将来の文脈で訓練された文脈的NMTモデルの性能と過去の文脈で訓練された文脈とを比較し,文脈としての将来の文の効果について検討する。
提案手法は, 文脈に依存しないトランスフォーマーよりも, 将来的な文脈の活用が著しく向上することを示し, 汎用的および代名詞的自動測定を用いた実験と評価を行った。
論文 参考訳(メタデータ) (2020-04-21T10:45:48Z) - When Does Unsupervised Machine Translation Work? [23.690875724726908]
我々は、異種言語ペア、異種ドメイン、多様なデータセット、真の低リソース言語を用いて、教師なし機械翻訳(MT)の実証評価を行う。
ソースコーパスとターゲットコーパスが異なるドメインから来た場合,性能は急速に低下することがわかった。
さらに、ソース言語とターゲット言語が異なるスクリプトを使用すると、教師なしMT性能が低下し、信頼性の高い低リソース言語ペアにおいて非常に低いパフォーマンスが観察される。
論文 参考訳(メタデータ) (2020-04-12T00:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。