Effects of resonant dipole-dipole interactions in the spin noise of atomic vapors
- URL: http://arxiv.org/abs/2407.00184v1
- Date: Fri, 28 Jun 2024 18:41:23 GMT
- Title: Effects of resonant dipole-dipole interactions in the spin noise of atomic vapors
- Authors: J. Delpy, N. Fayard, F. Bretenaker, F. Goldfarb,
- Abstract summary: We report unusual lineshapes of the spin noise spectra with a strong density dependence.
We show that these features are the hallmark of a strong dipole-dipole interaction between binaries within the ensemble.
This work demonstrates the potential of spin noise spectroscopy to observe and quantify strong interactions occurring within a particle ensemble.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We perform spin noise spectroscopy close to resonance in a 1-mm-thick cell containing a dense Rubidium vapor. A laser is used to excite optical dipoles in the vapor while probing the Faraday rotation noise. We report unusual lineshapes of the spin noise spectra with a strong density dependence, which we attribute to interactions arising between particles in the system. Introducing a two-body model and simulations, we show that these features are the hallmark of a strong dipole-dipole interaction between binaries within the ensemble. A precise fit of the experimental spectra allows to extract the strength and the duration of the dipole-dipole interaction. We unveil its impact on the spin noise frequency and investigate the role of the atomic motion in the unexpected lineshapes. This work demonstrates the potential of spin noise spectroscopy to observe and quantify strong interactions occurring within a particle ensemble.
Related papers
- Long-range interactions revealed by collective spin noise spectra in atomic vapors [0.0]
We report anomalous features in the spin noise spectroscopy (SNS) of a thin cell of a dense vapor of alkali atoms.
At high densities and close to resonance, we observe a dramatic broadening of the spin noise spectra as well as an unexpected extra low-frequency noise component.
arXiv Detail & Related papers (2024-06-28T18:30:43Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Dipole-dipole Interactions Through a Lens [0.0]
We study the fluctuation-mediated interactions between two atoms in the presence of an aplanatic lens.
We derive the field propagation of the linear optical system in terms of the electromagnetic Green's tensor for an aplanatic lens.
arXiv Detail & Related papers (2022-04-01T17:47:42Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Faraday imaging induced squeezing of a double-well Bose-Einstein
condensate [0.0]
We examine how non-destructive measurements generate spin squeezing in an atomic Bose-Einstein condensate confined in a double-well trap.
The condensate in each well is monitored using coherent light beams in a Mach-Zehnder configuration that interacts with the atoms through a quantum nondemolition Hamiltonian.
We find that monitoring the condensate at zero detection current and with identical coherent light beams minimizes the backaction of the measurement on the atoms.
arXiv Detail & Related papers (2021-04-06T09:16:04Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Anisotropic Spin-Acoustic Resonance in Silicon Carbide at Room
Temperature [0.0]
We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature.
Results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control.
arXiv Detail & Related papers (2020-05-02T10:51:50Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.