Decoupling Dipolar Interactions in Dense Spin Ensembles
- URL: http://arxiv.org/abs/2412.16851v1
- Date: Sun, 22 Dec 2024 04:32:50 GMT
- Title: Decoupling Dipolar Interactions in Dense Spin Ensembles
- Authors: Linta Joseph, Wynter Alford, Chandrasekhar Ramanathan,
- Abstract summary: We investigate the performance of a series of pulse sequences that aim to suppress inter-spin dipolar couplings.
Disagreements between experiments and theory are typically explained by the presence of control errors and experimental non-idealities.
- Score: 0.0
- License:
- Abstract: Dense spin ensembles in solids present a natural platform for studying quantum many-body dynamics. Multiple-pulse coherent control can be used to manipulate the magnetic dipolar interaction between the spins to engineer their dynamics. Here, we investigate the performance of a series of well-known pulse sequences that aim to suppress inter-spin dipolar couplings. We use a combination of numerical simulations and solid-state nuclear magnetic resonance (NMR) experiments on adamantane to evaluate and compare sequence performance. We study the role of sequence parameters like inter-pulse delays and resonance offsets. Disagreements between experiments and theory are typically explained by the presence of control errors and experimental non-idealities. The simulations allow us to explore the influence of factors such as finite pulse widths, rotation errors, and phase transient errors. We also investigate the role of local disorder and establish that it is, perhaps unsurprisingly, a distinguishing factor in the decoupling efficiency of spectroscopic sequences (that preserve Hamiltonian terms proportional to $S_z$) and time-suspension sequences (which refocus all terms in the internal Hamiltonian). We discuss our findings in the context of previously known analytical results from Average Hamiltonian Theory. Finally, we explore the ability of time-suspension sequences to protect multi-spin correlations in the system.
Related papers
- Spin Squeezing of Macroscopic Nuclear Spin Ensembles [44.99833362998488]
Squeezing macroscopic spin ensembles may prove to be a useful technique for fundamental physics experiments.
We analyze the squeezing dynamics in the presence of decoherence and finite spin polarization, showing that achieving 7 dB spin squeezing is feasible in several nuclear spin systems.
arXiv Detail & Related papers (2025-02-19T21:16:54Z) - Ambiguous Resonances in Multipulse Quantum Sensing with Nitrogen Vacancy Centers [0.2686836573610359]
We experimentally characterized three of these effects present in single nitrogen vacancy centers in diamond.
We also developed a numerical simulations model without rotating wave approximation, showing robust correlation to the experimental data.
Although focused with nitrogen vacancy centers and dynamical decoupling sequences, these results and the developed model can potentially be applied to other solid state spins and quantum sensing techniques.
arXiv Detail & Related papers (2024-07-12T16:35:36Z) - Quantum frustrated Wigner chains [0.0]
A Wigner chain in a periodic potential is a paradigmatic example of geometric frustration with long-range interactions.
We show that their action is mapped into a massive, long-range (1+1) Thirring model, where the solitons are charged fermionic excitations over an effective Dirac sea.
arXiv Detail & Related papers (2023-11-24T10:29:55Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Superconductivity in Correlated Multi-Orbital Systems with Spin-Orbit
Coupling: Coexistence of Even- and Odd-Frequency Pairing and the Case of
Strontium Ruthenate [0.0]
We generalize the frequency-dependent theory of superconductivity mediated by spin and charge fluctuations to include spin-orbit coupling in multi-orbital systems.
We characterize the superconducting states using the spin-parity-orbital-time $SPOT$ quantum numbers, group theory, and phase distributions in the complex plane.
We find that spin-orbit coupling leads to ubiquitous entanglement of spin and orbital quantum numbers, along with notable mixing between even- and odd-frequency correlations.
arXiv Detail & Related papers (2022-01-21T23:06:18Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum dynamics simulation of intramolecular singlet fission in
covalently linked tetracene dimer [0.0]
We study singlet fission in tetracene para-dimers, covalently linked by a phenyl group.
In contrast to most previous works, we account for the full quantum dynamics of the combined excitonic and vibrational system.
arXiv Detail & Related papers (2021-07-29T13:15:24Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.