論文の概要: Deconvolving Complex Neuronal Networks into Interpretable Task-Specific Connectomes
- arxiv url: http://arxiv.org/abs/2407.00201v1
- Date: Fri, 28 Jun 2024 19:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:00:32.393864
- Title: Deconvolving Complex Neuronal Networks into Interpretable Task-Specific Connectomes
- Title(参考訳): 複雑な神経ネットワークを解釈可能なタスク特異的コネクトームに分解する
- Authors: Yifan Wang, Vikram Ravindra, Ananth Grama,
- Abstract要約: タスク特異的機能MRI(fMRI)画像は、認知過程の神経基盤を研究する上で優れたモダリティを提供する。
我々は、fMRIデータを用いて、タスク固有の集約ニューロンネットワークを、標準ネットワークと呼ばれる基本的なビルディングブロックの集合に分解する問題を定式化し、解決する。
- 参考スコア(独自算出の注目度): 12.762193569830593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Task-specific functional MRI (fMRI) images provide excellent modalities for studying the neuronal basis of cognitive processes. We use fMRI data to formulate and solve the problem of deconvolving task-specific aggregate neuronal networks into a set of basic building blocks called canonical networks, to use these networks for functional characterization, and to characterize the physiological basis of these responses by mapping them to regions of the brain. Our results show excellent task-specificity of canonical networks, i.e., the expression of a small number of canonical networks can be used to accurately predict tasks; generalizability across cohorts, i.e., canonical networks are conserved across diverse populations, studies, and acquisition protocols; and that canonical networks have strong anatomical and physiological basis. From a methods perspective, the problem of identifying these canonical networks poses challenges rooted in the high dimensionality, small sample size, acquisition variability, and noise. Our deconvolution technique is based on non-negative matrix factorization (NMF) that identifies canonical networks as factors of a suitably constructed matrix. We demonstrate that our method scales to large datasets, yields stable and accurate factors, and is robust to noise.
- Abstract(参考訳): タスク特異的機能MRI(fMRI)画像は、認知過程の神経基盤を研究する上で優れたモダリティを提供する。
我々は、fMRIデータを用いて、タスク固有の集合神経ネットワークを標準的ネットワークと呼ばれる基本的なビルディングブロックの集合に分解し、これらのネットワークを機能的特徴付けに利用し、これらの応答の生理的基盤を脳の領域にマッピングすることで特徴づける。
本研究の結果は,少数のカノニカルネットワークを用いてタスクを正確に予測することができること,コホート間の一般化可能性,すなわちカノニカルネットワークは多様な集団,研究,獲得プロトコルにまたがって保存されていること,そして,カノニカルネットワークが解剖学的および生理的基盤が強いこと,など,カノニカルネットワークの優れたタスク特異性を示す。
手法の観点からは、これらの標準的ネットワークを特定する問題は、高次元性、小さなサンプルサイズ、取得変数、ノイズに根ざした課題を引き起こす。
我々のデコンボリューション手法は、正準ネットワークを好適に構築された行列の因子として識別する非負行列分解(NMF)に基づいている。
我々は,本手法が大規模データセットにスケールし,安定かつ高精度な要因が得られ,ノイズに強いことを実証した。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Metanetworks for Processing Diverse Neural Architectures [33.686728709734105]
Graph Metanetworks(GMN)は、競合するメソッドが苦労するニューラルネットワークに一般化する。
GMNは,入力ニューラルネットワーク関数を残したパラメータ置換対称性と等価であることを示す。
論文 参考訳(メタデータ) (2023-12-07T18:21:52Z) - Feature emergence via margin maximization: case studies in algebraic
tasks [4.401622714202886]
訓練されたニューラルネットワークは、一般群における合成を行うために、既約群理論表現に対応する特徴を用いることを示す。
より一般的に、私たちの技術が、ニューラルネットワークが特定の計算戦略を採用する理由のより深い理解を促進するのに役立つことを願っています。
論文 参考訳(メタデータ) (2023-11-13T18:56:33Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
表現上の相似性を定量化する計量空間の族を提供する。
我々は、正準相関解析に基づいて既存の表現類似度尺度を修正し、三角形の不等式を満たす。
解剖学的特徴とモデル性能の観点から解釈可能な神経表現の関係を同定する。
論文 参考訳(メタデータ) (2021-10-27T19:48:55Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
入力パラメータのトレーニング可能な関数を用いて条件パラメトリゼーションの考え方を一般化する。
条件パラメータ化ネットワークは従来のネットワークに比べて優れた性能を示すことを示す。
CP-GNetと呼ばれるネットワークアーキテクチャも、メッシュ上のフローのスタンドアロン予測に反応可能な最初のディープラーニングモデルとして提案されている。
論文 参考訳(メタデータ) (2021-09-15T20:21:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - Emergence of Network Motifs in Deep Neural Networks [0.35911228556176483]
ニューラルネットワークの研究にネットワークサイエンスツールをうまく応用できることが示される。
特に,マルチ層パーセプトロンにおけるネットワークモチーフの出現について検討する。
論文 参考訳(メタデータ) (2019-12-27T17:05:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。