論文の概要: Multimodal Prototyping for cancer survival prediction
- arxiv url: http://arxiv.org/abs/2407.00224v1
- Date: Fri, 28 Jun 2024 20:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:00:32.378855
- Title: Multimodal Prototyping for cancer survival prediction
- Title(参考訳): 癌生存予測のためのマルチモーダルプロトタイピング
- Authors: Andrew H. Song, Richard J. Chen, Guillaume Jaume, Anurag J. Vaidya, Alexander S. Baras, Faisal Mahmood,
- Abstract要約: ギガピクセルヒストロジー全体スライディング画像(WSI)と転写学的プロファイルを組み合わせたマルチモーダルサバイバル法は,患者の予後と成層化に特に有望である。
現在のアプローチでは、WSIを小さなパッチ(>10,000パッチ)にトークン化し、トランスクリプトミクスを遺伝子グループに分割し、結果を予測するためにTransformerを使用して統合する。
このプロセスは多くのトークンを生成し、これは注意を計算するための高いメモリ要求をもたらし、ポストホック解釈可能性分析を複雑にする。
我々のフレームワークは、新しい解釈可能性解析を解き放ちながら、はるかに少ない計算で最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 45.61869793509184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal survival methods combining gigapixel histology whole-slide images (WSIs) and transcriptomic profiles are particularly promising for patient prognostication and stratification. Current approaches involve tokenizing the WSIs into smaller patches (>10,000 patches) and transcriptomics into gene groups, which are then integrated using a Transformer for predicting outcomes. However, this process generates many tokens, which leads to high memory requirements for computing attention and complicates post-hoc interpretability analyses. Instead, we hypothesize that we can: (1) effectively summarize the morphological content of a WSI by condensing its constituting tokens using morphological prototypes, achieving more than 300x compression; and (2) accurately characterize cellular functions by encoding the transcriptomic profile with biological pathway prototypes, all in an unsupervised fashion. The resulting multimodal tokens are then processed by a fusion network, either with a Transformer or an optimal transport cross-alignment, which now operates with a small and fixed number of tokens without approximations. Extensive evaluation on six cancer types shows that our framework outperforms state-of-the-art methods with much less computation while unlocking new interpretability analyses.
- Abstract(参考訳): ギガピクセルヒストロジー全体スライディング画像(WSI)と転写学的プロファイルを組み合わせたマルチモーダルサバイバル法は,患者の予後と成層化に特に有望である。
現在のアプローチでは、WSIを小さなパッチ(>10,000パッチ)にトークン化し、トランスクリプトミクスを遺伝子グループに分割し、結果を予測するためにTransformerを使用して統合する。
しかし、このプロセスは多くのトークンを生成し、これは注意を計算するための高いメモリ要求をもたらし、ポストホック解釈可能性分析を複雑にする。
その代わりに、(1) 形態素のプロトタイプを用いてトークンを構成することでWSIのモルフォロジー内容を効果的に要約し、300倍以上の圧縮を実現し、(2) 転写学的プロファイルを生物学的経路のプロトタイプで符号化することで細胞機能を正確に特徴付けることができる、という仮説を立てる。
結果として得られたマルチモーダルトークンは、Transformerか最適トランスポートクロスアライメントのいずれかで、融合ネットワークによって処理される。
6種類のがんに対する広範囲な評価は、我々のフレームワークが新しい解釈可能性解析を解き放ちながら、より少ない計算で最先端の手法より優れていることを示している。
関連論文リスト
- Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Gene-induced Multimodal Pre-training for Image-omic Classification [20.465959546613554]
本稿では、ゲノム情報と全スライド画像(WSI)を併用した遺伝子誘導型マルチモーダル事前学習フレームワークを提案する。
TCGAデータセットによる実験結果から,ネットワークアーキテクチャと事前学習フレームワークの優位性が示され,画像-オミクス分類の精度は99.47%に達した。
論文 参考訳(メタデータ) (2023-09-06T04:30:15Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
大腸癌生存予測に病理学とゲノム学的知見を統合したマルチモーダルトランスフォーマー(PathOmics)を提案する。
ギガピクセル全スライド画像における組織ミクロ環境間の内在的相互作用を捉えるための教師なし事前訓練を強調した。
我々は,TCGA大腸癌と直腸癌コホートの両方に対するアプローチを評価し,提案手法は競争力があり,最先端の研究より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-22T00:59:26Z) - Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction [3.2274401541163322]
本稿では,パスとヒストロジーパッチトークン間の相互作用をモデル化できるメモリ効率の良いマルチモーダルトランスを提案する。
提案モデルであるSURVPATHは,非モーダルベースラインとマルチモーダルベースラインの両方に対して評価した場合に,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-04-13T21:02:32Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - TMSS: An End-to-End Transformer-based Multimodal Network for
Segmentation and Survival Prediction [0.0]
腫瘍学者は、分析においてこれを行うのではなく、医療画像や患者の歴史などの複数のソースから、脳内の情報を融合させる。
本研究は,がんの定量化と患者の生存率推定において,腫瘍学者の分析行動を模倣する深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-09-12T06:22:05Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
本稿では,実解剖情報を活用し,腫瘍の現実的な画像ラベル対を生成する新しい生成法を提案する。
解剖学的画像とラベルのためのデュアルパス生成器を構築し, 独立して事前学習されたセグメンタによって制約された, サイクル一貫性のある設定で学習する。
生成した画像は,既存の手法に比べて定量的に顕著に改善された。
論文 参考訳(メタデータ) (2021-04-22T11:18:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。