VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections
- URL: http://arxiv.org/abs/2407.21244v1
- Date: Tue, 30 Jul 2024 23:29:47 GMT
- Title: VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections
- Authors: Hamidreza Kasaei, Mohammadreza Kasaei,
- Abstract summary: We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
- Score: 10.49712834719005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation Learning (IL) has emerged as a powerful approach in robotics, allowing robots to acquire new skills by mimicking human actions. Despite its potential, the data collection process for IL remains a significant challenge due to the logistical difficulties and high costs associated with obtaining high-quality demonstrations. To address these issues, we propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL. Our approach leverages affordable hardware and visual processing techniques to collect demonstrations, which are then augmented to create extensive training datasets for imitation learning. We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments and human-in-the-loop corrections. We evaluated our method through several rounds of experiments in simulated and real-robot settings, focusing on tasks of varying complexity, including bottle collecting, stacking objects, and hammering. Our experimental results validate the effectiveness of our approach in learning robust robot policies from simulated data, significantly improved by human-in-the-loop corrections and real-world data integration. Additionally, we demonstrate the framework's capability to generalize to new tasks, such as setting a drink tray, showcasing its adaptability and potential for handling a wide range of real-world bimanual manipulation tasks. A video of the experiments can be found at: https://youtu.be/YeVAMRqRe64?si=R179xDlEGc7nPu8i
Related papers
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - SWBT: Similarity Weighted Behavior Transformer with the Imperfect
Demonstration for Robotic Manipulation [32.78083518963342]
We propose a novel framework named Similarity Weighted Behavior Transformer (SWBT)
SWBT effectively learn from both expert and imperfect demonstrations without interaction with environments.
We are the first to attempt to integrate imperfect demonstrations into the offline imitation learning setting for robot manipulation tasks.
arXiv Detail & Related papers (2024-01-17T04:15:56Z) - RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in
One-Shot [56.130215236125224]
A key challenge in robotic manipulation in open domains is how to acquire diverse and generalizable skills for robots.
Recent research in one-shot imitation learning has shown promise in transferring trained policies to new tasks based on demonstrations.
This paper aims to unlock the potential for an agent to generalize to hundreds of real-world skills with multi-modal perception.
arXiv Detail & Related papers (2023-07-02T15:33:31Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.