論文の概要: LiteSearch: Efficacious Tree Search for LLM
- arxiv url: http://arxiv.org/abs/2407.00320v1
- Date: Sat, 29 Jun 2024 05:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 05:31:09.907707
- Title: LiteSearch: Efficacious Tree Search for LLM
- Title(参考訳): LiteSearch: LLMの効率的なツリー検索
- Authors: Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, Dong Yu,
- Abstract要約: 本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
- 参考スコア(独自算出の注目度): 70.29796112457662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.
- Abstract(参考訳): 近年の研究では、木探索アルゴリズム(例えばモンテカルロ木探索)は複雑な数学的推論タスクにおけるLLM性能を劇的に向上させることができることが示唆されている。
しかし, 無駄な探索戦略により, グリージー復号の10倍以上の計算資源を必要とすることが多く, 実用化が困難である。
本研究では,この問題に対処するために,動的ノード選択とノードレベルの探索予算(最大児童数)を算出したガイド付き木探索アルゴリズムを提案する。
ステップワイズアノテーションを使わずにトレーニングされた値ネットワーク(未来)からの探索の進捗とガイダンスを考慮し,提案アルゴリズムは,割り当てられた計算予算の範囲内に展開する前に,最も有望なツリーノードを反復的に選択する。
GSM8KおよびTabMWPデータセットを用いて行った実験は,本手法が競争性能を提供するだけでなく,ベースライン法に比べて計算コストが大幅に低いことを示した。
関連論文リスト
- Online Learning of Decision Trees with Thompson Sampling [12.403737756721467]
決定木は解釈可能な機械学習のための顕著な予測モデルである。
オンライン環境で最適な決定木を生成できるモンテカルロ木探索アルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-04-09T15:53:02Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
大規模言語モデルは、高度なプロンプト技術で顕著な推論能力に優れています。
近年の研究では、LLMがより困難な推論タスクを解くために受動的木探索を行えるように、検索ロジックを定義するために外部プログラムを活用することが提案されている。
我々は,LLMの自律木探索能力という新しい概念を提案し,正しい解を求める探索軌跡を含む応答を自動生成する。
論文 参考訳(メタデータ) (2023-10-14T14:14:38Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
本稿では,アルゴリズム的推論経路を通じて大規模言語モデルを促進する新しい手法を提案する。
この結果から,LLMをアルゴリズムを用いて指導すると,アルゴリズム自体よりも性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-20T22:36:23Z) - UNSAT Solver Synthesis via Monte Carlo Forest Search [10.754275929551593]
木MDPにおける学習ポリシーのための強化学習(RL)アルゴリズムであるモンテカルロ森林探索(MCFS)を紹介する。
そのような問題の例としては、SAT公式の不満足性の証明、SAT公式の解の数を数えることがある。
我々は,満足度(SAT)問題を解決するためにDPLL分岐ポリシーを学習するMCFSアルゴリズムであるKnuth Synthesisをダブした。
論文 参考訳(メタデータ) (2022-11-22T20:52:50Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
機械学習は分岐のための有望なパラダイムとして登場した。
分岐のための単純かつ効果的なRLアプローチであるレトロ分岐を提案する。
我々は現在最先端のRL分岐アルゴリズムを3~5倍に上回り、500の制約と1000の変数を持つMILP上での最高のILメソッドの性能の20%以内である。
論文 参考訳(メタデータ) (2022-05-28T06:08:07Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - Learning Optimal Tree Models Under Beam Search [27.92120639502327]
既存のツリーモデルは、トレーニングテストの相違に悩まされている。
我々はビームサーチとキャリブレーションの下でベイズ最適性の概念を開発する。
本稿では,ビームサーチによる最適木モデル学習のための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-27T17:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。