Towards Universal Mesh Movement Networks
- URL: http://arxiv.org/abs/2407.00382v3
- Date: Wed, 30 Oct 2024 01:33:44 GMT
- Title: Towards Universal Mesh Movement Networks
- Authors: Mingrui Zhang, Chunyang Wang, Stephan Kramer, Joseph G. Wallwork, Siyi Li, Jiancheng Liu, Xiang Chen, Matthew D. Piggott,
- Abstract summary: We introduce the Universal Mesh Movement Network (UM2N)
UM2N can be applied in a non-intrusive, zero-shot manner to move meshes with different size distributions and structures.
We evaluate our method on advection and Navier-Stokes based examples, as well as a real-world tsunami simulation case.
- Score: 13.450178050669964
- License:
- Abstract: Solving complex Partial Differential Equations (PDEs) accurately and efficiently is an essential and challenging problem in all scientific and engineering disciplines. Mesh movement methods provide the capability to improve the accuracy of the numerical solution without increasing the overall mesh degree of freedom count. Conventional sophisticated mesh movement methods are extremely expensive and struggle to handle scenarios with complex boundary geometries. However, existing learning-based methods require re-training from scratch given a different PDE type or boundary geometry, which limits their applicability, and also often suffer from robustness issues in the form of inverted elements. In this paper, we introduce the Universal Mesh Movement Network (UM2N), which -- once trained -- can be applied in a non-intrusive, zero-shot manner to move meshes with different size distributions and structures, for solvers applicable to different PDE types and boundary geometries. UM2N consists of a Graph Transformer (GT) encoder for extracting features and a Graph Attention Network (GAT) based decoder for moving the mesh. We evaluate our method on advection and Navier-Stokes based examples, as well as a real-world tsunami simulation case. Our method outperforms existing learning-based mesh movement methods in terms of the benchmarks described above. In comparison to the conventional sophisticated Monge-Amp\`ere PDE-solver based method, our approach not only significantly accelerates mesh movement, but also proves effective in scenarios where the conventional method fails. Our project page is at https://erizmr.github.io/UM2N/.
Related papers
- Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
We introduce a non-overlapping, Schwarz-type domain decomposition method employing a generalized interface condition.
Our method utilizes physics and equality constrained artificial neural networks (PECANN) in each subdomain.
We demonstrate the generalization ability and robust parallel performance of our method across a range of forward and inverse problems.
arXiv Detail & Related papers (2024-09-20T16:48:55Z) - Better Neural PDE Solvers Through Data-Free Mesh Movers [13.013830215107735]
We develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture.
Our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems.
arXiv Detail & Related papers (2023-12-09T14:05:28Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - $r-$Adaptive Deep Learning Method for Solving Partial Differential
Equations [0.685316573653194]
We introduce an $r-$adaptive algorithm to solve Partial Differential Equations using a Deep Neural Network.
The proposed method restricts to tensor product meshes and optimize the boundary node locations in one dimension, from which we build two- or three-dimensional meshes.
arXiv Detail & Related papers (2022-10-19T21:38:46Z) - M2N: Mesh Movement Networks for PDE Solvers [17.35053721712421]
We present the first learning-based end-to-end mesh movement framework for PDE solvers.
Key requirements are alleviating mesh, boundary consistency, and generalization to mesh with different resolutions.
We validate our methods on stationary and time-dependent, linear and non-linear equations.
arXiv Detail & Related papers (2022-04-24T04:23:31Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
Graph neural networks show promise in accurately representing irregularly meshed objects and learning their dynamics.
In this work, we represent meshes naturally as graphs, process these using Graph Networks, and formulate our physics-based loss to provide an unsupervised learning framework for partial differential equations (PDE)
Our framework will enable the application of PDE solvers in interactive settings, such as model-based control of soft-body deformations.
arXiv Detail & Related papers (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.