Multi-task multi-constraint differential evolution with elite-guided knowledge transfer for coal mine integrated energy system dispatching
- URL: http://arxiv.org/abs/2407.00386v1
- Date: Sat, 29 Jun 2024 10:00:16 GMT
- Title: Multi-task multi-constraint differential evolution with elite-guided knowledge transfer for coal mine integrated energy system dispatching
- Authors: Canyun Dai, Xiaoyan Sun, Hejuan Hu, Wei Song, Yong Zhang, Dunwei Gong,
- Abstract summary: Existing constrained multiobjective evolutionary algorithms struggle with locating multiple small and irregular feasible regions.
We here develop a multitask evolutionary algorithm framework that incorporates the dispatch correlated domain knowledge.
The proposed algorithm in feasibility, convergence, and diversity is demonstrated in a case study of a coal mine integrated energy system.
- Score: 9.050846217690856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dispatch optimization of coal mine integrated energy system is challenging due to high dimensionality, strong coupling constraints, and multiobjective. Existing constrained multiobjective evolutionary algorithms struggle with locating multiple small and irregular feasible regions, making them inaplicable to this problem. To address this issue, we here develop a multitask evolutionary algorithm framework that incorporates the dispatch correlated domain knowledge to effectively deal with strong constraints and multiobjective optimization. Possible evolutionary multitask construction strategy based on complex constraint relationship analysis and handling, i.e., constraint coupled spatial decomposition, constraint strength classification and constraint handling technique, is first explored. Within the multitask evolutionary optimization framework, two strategies, i.e., an elite guided knowledge transfer by designing a special crowding distance mechanism to select dominant individuals from each task, and an adaptive neighborhood technology based mutation to effectively balance the diversity and convergence of each optimized task for the differential evolution algorithm, are further developed. The performance of the proposed algorithm in feasibility, convergence, and diversity is demonstrated in a case study of a coal mine integrated energy system by comparing with CPLEX solver and seven constrained multiobjective evolutionary algorithms.
Related papers
- Weighted strategies to guide a multi-objective evolutionary algorithm
for multi-UAV mission planning [12.97430155510359]
This work proposes a weighted random generator for the creation and mutation of new individuals.
The main objective of this work is to reduce the convergence rate of the MOEA solver for multi-UAV mission planning.
arXiv Detail & Related papers (2024-02-28T23:05:27Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
This paper develops a novel EMT framework for high-dimensional feature selection problems, namely MO-FSEMT.
A task-specific knowledge transfer mechanism is designed to leverage the advantage information of each task, enabling the discovery and effective transmission of high-quality solutions.
arXiv Detail & Related papers (2024-01-03T06:34:39Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
Constrained multi-objective optimization problems (CMOPs) pervade real-world applications in science, engineering, and design.
We present the first of its kind evolutionary optimization framework, inspired by the principles of the alternating direction method of multipliers that decouples objective and constraint functions.
Our framework tackles CMOPs with unknown constraints by reformulating the original problem into an additive form of two subproblems, each of which is allotted a dedicated evolutionary population.
arXiv Detail & Related papers (2024-01-02T00:38:20Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic
Algorithm for Evolutionary Multitasking [17.120962133525225]
We introduce a novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environments.
AT-MFCGA relies on cellular automata to implement mechanisms in order to exchange knowledge among the optimization problems under consideration.
arXiv Detail & Related papers (2020-10-08T12:00:10Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary
Multitasking [9.54239662772307]
We propose a novel algorithmic scheme for dealing with multitasking environments.
The proposed approach, coined as Coevolutionary Bat Algorithm, finds its inspiration in concepts from both co-evolutionary strategies and the metaheuristic Bat Algorithm.
arXiv Detail & Related papers (2020-03-24T13:37:43Z) - Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design,
Performance Comparison and Genetic Transferability Analysis [17.120962133525225]
Multiobjective optimization is an incipient research area which is lately gaining a notable research momentum.
In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios.
The proposed MFCGA hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems.
arXiv Detail & Related papers (2020-03-24T11:03:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.