Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2502.05824v1
- Date: Sun, 09 Feb 2025 09:15:47 GMT
- Title: Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning
- Authors: Geng Sun, Jian Xiao, Jiahui Li, Jiacheng Wang, Jiawen Kang, Dusit Niyato, Shiwen Mao,
- Abstract summary: Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.
This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
- Score: 59.660724802286865
- License:
- Abstract: Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications. However, the limited onboard energy and antenna power of a UAV restrict its communication range and transmission capability. To address these limitations, this work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users, under interference from non-associated BSs and dynamic channel conditions. Specifically, we introduce a memory-based random walk model to more accurately depict the mobility patterns of terrestrial mobile users. Following this, we formulate a multi-objective optimization problem (MOP) focused on maximizing the transmission rate while minimizing the flight energy consumption of the UAV swarm. Given the NP-hard nature of the formulated MOP and the highly dynamic environment, we transform this problem into a multi-objective Markov decision process and propose an improved evolutionary multi-objective reinforcement learning algorithm. Specifically, this algorithm introduces an evolutionary learning approach to obtain the approximate Pareto set for the formulated MOP. Moreover, the algorithm incorporates a long short-term memory network and hyper-sphere-based task selection method to discern the movement patterns of terrestrial mobile users and improve the diversity of the obtained Pareto set. Simulation results demonstrate that the proposed method effectively generates a diverse range of non-dominated policies and outperforms existing methods. Additional simulations demonstrate the scalability and robustness of the proposed CB-based method under different system parameters and various unexpected circumstances.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks [71.23793087286703]
Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications.
This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems.
arXiv Detail & Related papers (2024-12-09T12:56:50Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.