A Recipe of Parallel Corpora Exploitation for Multilingual Large Language Models
- URL: http://arxiv.org/abs/2407.00436v1
- Date: Sat, 29 Jun 2024 13:12:39 GMT
- Title: A Recipe of Parallel Corpora Exploitation for Multilingual Large Language Models
- Authors: Peiqin Lin, André F. T. Martins, Hinrich Schütze,
- Abstract summary: Recent studies have highlighted the potential of exploiting parallel corpora to enhance multilingual large language models.
We investigate the impact of parallel corpora quality and quantity, training objectives, and model size on the performance of multilingual large language models enhanced with parallel corpora.
- Score: 64.79218405438871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies have highlighted the potential of exploiting parallel corpora to enhance multilingual large language models, improving performance in both bilingual tasks, e.g., machine translation, and general-purpose tasks, e.g., text classification. Building upon these findings, our comprehensive study aims to identify the most effective strategies for leveraging parallel corpora. We investigate the impact of parallel corpora quality and quantity, training objectives, and model size on the performance of multilingual large language models enhanced with parallel corpora across diverse languages and tasks. Our analysis reveals several key insights: (i) filtering noisy translations is essential for effectively exploiting parallel corpora, while language identification and short sentence filtering have little effect; (ii) even a corpus containing just 10K parallel sentences can yield results comparable to those obtained from much larger datasets; (iii) employing only the machine translation objective yields the best results among various training objectives and their combinations; (iv) larger multilingual language models benefit more from parallel corpora than smaller models due to their stronger capacity for cross-task transfer. Our study offers valuable insights into the optimal utilization of parallel corpora to enhance multilingual large language models, extending the generalizability of previous findings from limited languages and tasks to a broader range of scenarios.
Related papers
- Relay Decoding: Concatenating Large Language Models for Machine Translation [21.367605327742027]
We propose an innovative approach called RD (Relay Decoding), which entails concatenating two distinct large models that individually support the source and target languages.
By incorporating a simple mapping layer to facilitate the connection between these two models and utilizing a limited amount of parallel data for training, we successfully achieve superior results in the machine translation task.
arXiv Detail & Related papers (2024-05-05T13:42:25Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - Cross-Lingual Supervision improves Large Language Models Pre-training [36.932380291416365]
We demonstrate that pre-training Large Language Models on a mixture of a self-supervised Language Modeling objective and the supervised Machine Translation objective, yields models with better in-context learning abilities.
As pre-training is a very resource-intensive process and a grid search on the best mixing ratio between the two objectives is prohibitively expensive, we propose a simple yet effective strategy to learn it during pre-training.
arXiv Detail & Related papers (2023-05-19T16:14:07Z) - Language Agnostic Multilingual Information Retrieval with Contrastive
Learning [59.26316111760971]
We present an effective method to train multilingual information retrieval systems.
We leverage parallel and non-parallel corpora to improve the pretrained multilingual language models.
Our model can work well even with a small number of parallel sentences.
arXiv Detail & Related papers (2022-10-12T23:53:50Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-M is a new training method that encourages the model to align the representation of multiple languages with monolingual corpora.
We generate pseudo-parallel sentences pairs on a monolingual corpus to enable the learning of semantic alignment between different languages.
Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results on various cross-lingual downstream tasks.
arXiv Detail & Related papers (2020-12-31T15:52:27Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
This paper attempts to peek into the black-box of multilingual optimization through the lens of loss function geometry.
We find that gradient similarity measured along the optimization trajectory is an important signal, which correlates well with language proximity.
We derive a simple and scalable optimization procedure, named Gradient Vaccine, which encourages more geometrically aligned parameter updates for close tasks.
arXiv Detail & Related papers (2020-10-12T17:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.