Beyond Functional Correctness: Investigating Coding Style Inconsistencies in Large Language Models
- URL: http://arxiv.org/abs/2407.00456v1
- Date: Sat, 29 Jun 2024 14:56:11 GMT
- Title: Beyond Functional Correctness: Investigating Coding Style Inconsistencies in Large Language Models
- Authors: Yanlin Wang, Tianyue Jiang, Mingwei Liu, Jiachi Chen, Zibin Zheng,
- Abstract summary: Large language models (LLMs) have brought a paradigm shift to the field of code generation.
We empirically analyze the differences in coding style between the code generated by Code LLMs and the code written by human developers.
- Score: 28.295926947968574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have brought a paradigm shift to the field of code generation, offering the potential to enhance the software development process. However, previous research mainly focuses on the accuracy of code generation, while coding style differences between LLMs and human developers remain under-explored. In this paper, we empirically analyze the differences in coding style between the code generated by mainstream Code LLMs and the code written by human developers, and summarize coding style inconsistency taxonomy. Specifically, we first summarize the types of coding style inconsistencies by manually analyzing a large number of generation results. We then compare the code generated by Code LLMs with the code written by human programmers in terms of readability, conciseness, and robustness. The results reveal that LLMs and developers have different coding styles. Additionally, we study the possible causes of these inconsistencies and provide some solutions to alleviate the problem.
Related papers
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - Steering Large Language Models between Code Execution and Textual Reasoning [22.279107036500083]
Textual reasoning has inherent limitations in solving tasks with challenges in math, logics, optimization, and searching.
The recently released OpenAI GPT Code Interpreter and multi-agent frameworks such as AutoGen have demonstrated remarkable proficiency of integrating code generation and execution.
We propose three methods to better steer LLM code/text generation and achieve a notable improvement.
arXiv Detail & Related papers (2024-10-04T15:44:47Z) - Can OpenSource beat ChatGPT? -- A Comparative Study of Large Language Models for Text-to-Code Generation [0.24578723416255752]
We evaluate five different large language models (LLMs) concerning their capabilities for text-to-code generation.
ChatGPT can handle these typical programming challenges by far the most effectively, surpassing even code-specialized models like Code Llama.
arXiv Detail & Related papers (2024-09-06T10:03:49Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
We propose a novel zero-shot synthetic code detector based on the similarity between the code and its rewritten variants.
Our results demonstrate a notable enhancement over existing synthetic content detectors designed for general texts.
arXiv Detail & Related papers (2024-05-25T08:57:28Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
We propose CodeGRAG, a Graphical Retrieval Augmented Code Generation framework to enhance the performance of LLMs.
CodeGRAG builds the graphical view of code blocks based on the control flow and data flow of them to fill the gap between programming languages and natural language.
Various experiments and ablations are done on four datasets including both the C++ and python languages to validate the hard meta-graph prompt, the soft prompting technique, and the effectiveness of the objectives for pretrained GNN expert.
arXiv Detail & Related papers (2024-05-03T02:48:55Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
We propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy.
Results indicate that MANGO significantly improves the code pass rate based on the strong baselines.
The robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting.
arXiv Detail & Related papers (2024-04-11T08:30:46Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
Large Language Models (LLMs) have shown remarkable capabilities in processing both natural and programming languages.
We propose a novel method to assess the code understanding performance of LLMs, particularly focusing on subtle differences between code and its descriptions.
We apply different types of code mutations, such as operator replacement and statement deletion, to generate inconsistent code-description pairs.
We conduct a case study on the two popular LLMs, GPT-3.5 and GPT-4, using the state-of-the-art code generation benchmark, HumanEval-X.
arXiv Detail & Related papers (2024-01-11T14:27:43Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiX is a novel prompting technique to improve the code generation performance of large language models (LLMs)
It first exploits test case analysis to obtain specification understanding and enables a self-improvement process.
muFiX further fixes the specification understanding towards the direction reducing the gap between the provided understanding and the actual understanding.
arXiv Detail & Related papers (2023-09-28T02:58:07Z) - Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code? [10.249771123421432]
We investigate whether Large Language Models (LLMs) attend to the same parts of a task description as human programmers during code generation.
We manually analyzed 211 incorrect code snippets and found five attention patterns that can be used to explain many code generation errors.
Our findings highlight the need for human-aligned LLMs for better interpretability and programmer trust.
arXiv Detail & Related papers (2023-06-02T00:57:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.