論文の概要: Leveraging Ontologies to Document Bias in Data
- arxiv url: http://arxiv.org/abs/2407.00509v1
- Date: Sat, 29 Jun 2024 18:41:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:46:30.888195
- Title: Leveraging Ontologies to Document Bias in Data
- Title(参考訳): オントロジを活用してデータのバイアスを文書化する
- Authors: Mayra Russo, Maria-Esther Vidal,
- Abstract要約: Doc-BiasOは、textitfair-MLの文献とその尺度で定義されたバイアスの統合語彙の作成を目的としたリソースである。
私たちの主な目的は、AIのあらゆる領域に急速に拡大するにつれて、バイアス研究に関する既存の用語を明確にすることへの貢献です。
- 参考スコア(独自算出の注目度): 1.0635248457021496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) systems are capable of reproducing and often amplifying undesired biases. This puts emphasis on the importance of operating under practices that enable the study and understanding of the intrinsic characteristics of ML pipelines, prompting the emergence of documentation frameworks with the idea that ``any remedy for bias starts with awareness of its existence''. However, a resource that can formally describe these pipelines in terms of biases detected is still amiss. To fill this gap, we present the Doc-BiasO ontology, a resource that aims to create an integrated vocabulary of biases defined in the \textit{fair-ML} literature and their measures, as well as to incorporate relevant terminology and the relationships between them. Overseeing ontology engineering best practices, we re-use existing vocabulary on machine learning and AI, to foster knowledge sharing and interoperability between the actors concerned with its research, development, regulation, among others. Overall, our main objective is to contribute towards clarifying existing terminology on bias research as it rapidly expands to all areas of AI and to improve the interpretation of bias in data and downstream impact.
- Abstract(参考訳): 機械学習(ML)システムは再生可能であり、しばしば望ましくないバイアスを増幅する。
このことは、MLパイプラインの本質的な特性の研究と理解を可能にするプラクティスの下での運用の重要性を強調し、'バイアスに対するあらゆる救済は、その存在を意識することから始まる'という考え方でドキュメントフレームワークの出現を促している。
しかし、検出されたバイアスの観点からこれらのパイプラインを正式に記述できるリソースは、いまだ無意味である。
このギャップを埋めるために、Doc-BiasOオントロジー(Doc-BiasO ontology)という、‘textit{fair-ML} 文学で定義されたバイアスの語彙とそれらの測度を統合化し、関連する用語とそれらの関係を組み込むためのリソースを提示する。
オントロジーエンジニアリングのベストプラクティスを見越して、私たちは、機械学習とAIに関する既存の語彙を再使用し、その研究、開発、規制などに関わるアクター間の知識共有と相互運用性を促進します。
全体として、私たちの主な目的は、AIのあらゆる領域に急速に拡大するにつれて、バイアス研究に関する既存の用語を明確にすることへの貢献であり、データや下流の影響に対するバイアスの解釈を改善することにあります。
関連論文リスト
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Situated Ground Truths: Enhancing Bias-Aware AI by Situating Data Labels with SituAnnotate [0.1843404256219181]
SituAnnotateは構造化およびコンテキスト対応データアノテーションに対する新しいオントロジーベースのアプローチである。
コンテキストや文化的な状況において、AIシステムのトレーニングに使用される真理データを固定することを目的としている。
ラベルベースのデータセットを作成し、クエリし、比較する方法として、SituAnnotateは、ダウンストリームAIシステムに、コンテキストと文化バイアスを明確に考慮したトレーニングを実施する権限を与える。
論文 参考訳(メタデータ) (2024-06-10T09:33:13Z) - Informed Meta-Learning [55.2480439325792]
メタラーニングとインシデントMLは、事前知識をMLパイプラインに組み込むための2つのアプローチとして際立っている。
我々は,非構造化知識表現からの事前の取り込みを容易にする,情報メタラーニングというハイブリッドパラダイムを定式化する。
データ効率、観測ノイズに対する堅牢性、タスク分散シフトを改善する上で、情報メタラーニングの潜在的な利点を実証する。
論文 参考訳(メタデータ) (2024-02-25T15:08:37Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
Inlicit Discourse Relation Recognition (IDRR) のための Prompt-based Logical Semantics Enhancement (PLSE) 法を提案する。
提案手法は,事前学習した言語モデルに対する対話関係に関する知識を,素早い接続予測によってシームレスに注入する。
PDTB 2.0 と CoNLL16 データセットによる実験結果から,本手法は現状の最先端モデルに対して優れた一貫した性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-11-01T08:38:08Z) - Improving Language Models Meaning Understanding and Consistency by
Learning Conceptual Roles from Dictionary [65.268245109828]
現代事前訓練言語モデル(PLM)の非人間的行動は、その信頼性を損なう主要な原因である。
驚くべき現象は、矛盾した結果を生み出す不整合予測の生成である。
本研究では,PLMの認知度を向上させることで,一貫性のない行動問題を緩和する実践的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-24T06:15:15Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - O-Dang! The Ontology of Dangerous Speech Messages [53.15616413153125]
O-Dang!:The Ontology of Dangerous Speech Messages, a systematic and interoperable Knowledge Graph (KG)
O-Dang!は、Lingguistic Linked Open Dataコミュニティで共有されている原則に従って、イタリアのデータセットを構造化されたKGにまとめ、整理するように設計されている。
ゴールド・スタンダードとシングル・アノテータのラベルをKGにエンコードするモデルを提供する。
論文 参考訳(メタデータ) (2022-07-13T11:50:05Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。