DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction
- URL: http://arxiv.org/abs/2407.00633v2
- Date: Tue, 22 Oct 2024 18:52:19 GMT
- Title: DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction
- Authors: Ameya Pore, Riccardo Muradore, Diego Dall'Alba,
- Abstract summary: Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data.
In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods.
We propose a novel method, Disentangled Environment and Agent Representations, that uses the segmentation mask of the agent as supervision.
- Score: 4.813546138483559
- License:
- Abstract: Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data, especially when the visual scene is complex and unstructured. In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods. We propose a novel method, Disentangled Environment and Agent Representations (DEAR), that uses the segmentation mask of the agent as supervision to learn disentangled representations of the environment and the agent through feature separation constraints. Unlike previous approaches, DEAR does not require reconstruction of visual observations. These representations are then used as an auxiliary loss to the RL objective, encouraging the agent to focus on the relevant features of the environment. We evaluate DEAR on two challenging benchmarks: Distracting DeepMind control suite and Franka Kitchen manipulation tasks. Our findings demonstrate that DEAR surpasses state-of-the-art methods in sample efficiency, achieving comparable or superior performance with reduced parameters. Our results indicate that integrating agent knowledge into visual RL methods has the potential to enhance their learning efficiency and robustness.
Related papers
- Make the Pertinent Salient: Task-Relevant Reconstruction for Visual Control with Distractions [14.274653873720334]
We propose a simple yet effective auxiliary task to facilitate representation learning in distracting environments.
Under the assumption that task-relevant components of image observations are straightforward to identify with prior knowledge, we use a segmentation mask on image observations to only task-relevant components.
In modified DeepMind Control suite (DMC) and Meta-World tasks with added visual distractions, SD achieves significantly better sample efficiency and greater final performance than prior work.
arXiv Detail & Related papers (2024-10-13T19:24:07Z) - Improving Reinforcement Learning Efficiency with Auxiliary Tasks in
Non-Visual Environments: A Comparison [0.0]
This study compares common auxiliary tasks based on, to the best of our knowledge, the only decoupled representation learning method for low-dimensional non-visual observations.
Our findings show that representation learning with auxiliary tasks only provides performance gains in sufficiently complex environments.
arXiv Detail & Related papers (2023-10-06T13:22:26Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a challenging problem in visual reinforcement learning.
We propose a Sequential Action-induced invariant Representation (SAR) method, in which the encoder is optimized by an auxiliary learner to only preserve the components that follow the control signals of sequential actions.
arXiv Detail & Related papers (2023-09-22T05:31:55Z) - Efficient RL via Disentangled Environment and Agent Representations [40.114817446130935]
We propose an approach for learning such structured representations for RL algorithms, using visual knowledge of the agent, such as its shape or mask.
We show that our method, Structured Environment-Agent Representations, outperforms state-of-the-art model-free approaches over 18 different challenging visual simulation environments spanning 5 different robots.
arXiv Detail & Related papers (2023-09-05T17:59:45Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Task-Induced Representation Learning [14.095897879222672]
We evaluate the effectiveness of representation learning approaches for decision making in visually complex environments.
We find that representation learning generally improves sample efficiency on unseen tasks even in visually complex scenes.
arXiv Detail & Related papers (2022-04-25T17:57:10Z) - Mask-based Latent Reconstruction for Reinforcement Learning [58.43247393611453]
Mask-based Latent Reconstruction (MLR) is proposed to predict the complete state representations in the latent space from the observations with spatially and temporally masked pixels.
Extensive experiments show that our MLR significantly improves the sample efficiency in deep reinforcement learning.
arXiv Detail & Related papers (2022-01-28T13:07:11Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.