Make the Pertinent Salient: Task-Relevant Reconstruction for Visual Control with Distractions
- URL: http://arxiv.org/abs/2410.09972v1
- Date: Sun, 13 Oct 2024 19:24:07 GMT
- Title: Make the Pertinent Salient: Task-Relevant Reconstruction for Visual Control with Distractions
- Authors: Kyungmin Kim, JB Lanier, Pierre Baldi, Charless Fowlkes, Roy Fox,
- Abstract summary: We propose a simple yet effective auxiliary task to facilitate representation learning in distracting environments.
Under the assumption that task-relevant components of image observations are straightforward to identify with prior knowledge, we use a segmentation mask on image observations to only task-relevant components.
In modified DeepMind Control suite (DMC) and Meta-World tasks with added visual distractions, SD achieves significantly better sample efficiency and greater final performance than prior work.
- Score: 14.274653873720334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Model-Based Reinforcement Learning (MBRL) have made it a powerful tool for visual control tasks. Despite improved data efficiency, it remains challenging to train MBRL agents with generalizable perception. Training in the presence of visual distractions is particularly difficult due to the high variation they introduce to representation learning. Building on DREAMER, a popular MBRL method, we propose a simple yet effective auxiliary task to facilitate representation learning in distracting environments. Under the assumption that task-relevant components of image observations are straightforward to identify with prior knowledge in a given task, we use a segmentation mask on image observations to only reconstruct task-relevant components. In doing so, we greatly reduce the complexity of representation learning by removing the need to encode task-irrelevant objects in the latent representation. Our method, Segmentation Dreamer (SD), can be used either with ground-truth masks easily accessible in simulation or by leveraging potentially imperfect segmentation foundation models. The latter is further improved by selectively applying the reconstruction loss to avoid providing misleading learning signals due to mask prediction errors. In modified DeepMind Control suite (DMC) and Meta-World tasks with added visual distractions, SD achieves significantly better sample efficiency and greater final performance than prior work. We find that SD is especially helpful in sparse reward tasks otherwise unsolvable by prior work, enabling the training of visually robust agents without the need for extensive reward engineering.
Related papers
- DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction [4.813546138483559]
Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data.
In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods.
We propose a novel method, Disentangled Environment and Agent Representations, that uses the segmentation mask of the agent as supervision.
arXiv Detail & Related papers (2024-06-30T09:15:21Z) - Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
We propose a high-value data selection approach TIVE, to eliminate redundancy within the visual instruction data and reduce the training cost.
Our approach using only about 15% data can achieve comparable average performance to the full-data fine-tuned model across eight benchmarks.
arXiv Detail & Related papers (2024-03-14T16:47:25Z) - Attention-Guided Masked Autoencoders For Learning Image Representations [16.257915216763692]
Masked autoencoders (MAEs) have established themselves as a powerful method for unsupervised pre-training for computer vision tasks.
We propose to inform the reconstruction process through an attention-guided loss function.
Our evaluations show that our pre-trained models learn better latent representations than the vanilla MAE.
arXiv Detail & Related papers (2024-02-23T08:11:25Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a challenging problem in visual reinforcement learning.
We propose a Sequential Action-induced invariant Representation (SAR) method, in which the encoder is optimized by an auxiliary learner to only preserve the components that follow the control signals of sequential actions.
arXiv Detail & Related papers (2023-09-22T05:31:55Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
In this work, we aim to unify a variety of pre-training tasks into a multi-task pre-trained model, namely MASTER.
MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors.
arXiv Detail & Related papers (2022-12-15T13:57:07Z) - Task-Induced Representation Learning [14.095897879222672]
We evaluate the effectiveness of representation learning approaches for decision making in visually complex environments.
We find that representation learning generally improves sample efficiency on unseen tasks even in visually complex scenes.
arXiv Detail & Related papers (2022-04-25T17:57:10Z) - Learning Task Informed Abstractions [10.920599910769276]
We propose learning Task Informed Abstractions (TIA) that explicitly separates reward-correlated visual features from distractors.
TIA leads to significant performance gains over state-of-the-art methods on many visual control tasks.
arXiv Detail & Related papers (2021-06-29T17:56:11Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.