A Narrative Review of Image Processing Techniques Related to Prostate Ultrasound
- URL: http://arxiv.org/abs/2407.00678v2
- Date: Mon, 07 Oct 2024 16:45:55 GMT
- Title: A Narrative Review of Image Processing Techniques Related to Prostate Ultrasound
- Authors: Haiqiao Wang, Hong Wu, Zhuoyuan Wang, Peiyan Yue, Dong Ni, Pheng-Ann Heng, Yi Wang,
- Abstract summary: Prostate cancer (PCa) poses a significant threat to men's health, with early diagnosis crucial for improving prognosis and reducing mortality rates.
Transrectal ultrasound (TRUS) plays a vital role in the diagnosis and image-guided intervention of PCa.
Many image processing algorithms in TRUS have been proposed and achieved state-of-the-art performance in several tasks.
- Score: 40.42947222889337
- License:
- Abstract: Prostate cancer (PCa) poses a significant threat to men's health, with early diagnosis being crucial for improving prognosis and reducing mortality rates. Transrectal ultrasound (TRUS) plays a vital role in the diagnosis and image-guided intervention of PCa.To facilitate physicians with more accurate and efficient computer-assisted diagnosis and interventions, many image processing algorithms in TRUS have been proposed and achieved state-of-the-art performance in several tasks, including prostate gland segmentation, prostate image registration, PCa classification and detection, and interventional needle detection. The rapid development of these algorithms over the past two decades necessitates a comprehensive summary. In consequence, this survey provides a \textcolor{blue}{narrative } analysis of this field, outlining the evolution of image processing methods in the context of TRUS image analysis and meanwhile highlighting their relevant contributions. Furthermore, this survey discusses current challenges and suggests future research directions to possibly advance this field further.
Related papers
- Uterine Ultrasound Image Captioning Using Deep Learning Techniques [0.0]
This paper investigates the use of deep learning for medical image captioning, with a particular focus on uterine ultrasound images.
Our research aims to assist medical professionals in making timely and accurate diagnoses, ultimately contributing to improved patient care.
arXiv Detail & Related papers (2024-11-21T11:41:42Z) - CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients [57.31670527557228]
This paper introduces the CO2Wounds-V2 dataset, an extended collection of RGB wound images from leprosy patients.
It aims to enhance the development and testing of image-processing algorithms in the medical field.
arXiv Detail & Related papers (2024-08-20T13:21:57Z) - AI-based Automatic Segmentation of Prostate on Multi-modality Images: A Review [17.187976904150545]
Early detection is vital in reducing the mortality rate among prostate cancer patients.
Prostate segmentation is challenging due to imperfections in the images and the prostate's complex tissue structure.
Recent machine learning and data mining tools have been integrated into various medical areas, including image segmentation.
arXiv Detail & Related papers (2024-07-09T07:36:18Z) - Deep PCCT: Photon Counting Computed Tomography Deep Learning
Applications Review [2.546256902486781]
Review delves into the recent developments and applications of PCCT in pre-clinical research.
PCCT has demonstrated remarkable efficacy in improving the detection of subtle abnormalities in breast.
In addition, it explores the integration of deep learning into PCCT, along with the study of radiomic features.
arXiv Detail & Related papers (2024-02-06T17:00:19Z) - Breast Ultrasound Report Generation using LangChain [58.07183284468881]
We propose the integration of multiple image analysis tools through a LangChain using Large Language Models (LLM) into the breast reporting process.
Our method can accurately extract relevant features from ultrasound images, interpret them in a clinical context, and produce comprehensive and standardized reports.
arXiv Detail & Related papers (2023-12-05T00:28:26Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Medical Image Analysis on Left Atrial LGE MRI for Atrial Fibrillation
Studies: A Review [18.22326892162902]
Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to visualize and quantify left atrial (LA) scars.
This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar and ablation gap segmentation and quantification from LGE MRI.
arXiv Detail & Related papers (2021-06-18T01:31:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.