RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging
- URL: http://arxiv.org/abs/2108.02508v1
- Date: Thu, 5 Aug 2021 10:35:06 GMT
- Title: RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging
- Authors: Narinder Singh Punn, Sonali Agarwal
- Abstract summary: The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
- Score: 0.6091702876917281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancements in deep learning technologies have produced immense
contribution to biomedical image analysis applications. With breast cancer
being the common deadliest disease among women, early detection is the key
means to improve survivability. Medical imaging like ultrasound presents an
excellent visual representation of the functioning of the organs; however, for
any radiologist analysing such scans is challenging and time consuming which
delays the diagnosis process. Although various deep learning based approaches
are proposed that achieved promising results, the present article introduces an
efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet)
model with minimal training parameters for tumor segmentation using breast
ultrasound imaging to further improve the segmentation performance of varying
tumor sizes. The RCA-IUnet model follows U-Net topology with residual inception
depth-wise separable convolution and hybrid pooling (max pooling and spectral
pooling) layers. In addition, cross-spatial attention filters are added to
suppress the irrelevant features and focus on the target structure. The
segmentation performance of the proposed model is validated on two publicly
available datasets using standard segmentation evaluation metrics, where it
outperformed the other state-of-the-art segmentation models.
Related papers
- CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Classification of Breast Cancer Lesions in Ultrasound Images by using
Attention Layer and loss Ensembles in Deep Convolutional Neural Networks [0.0]
We propose a new framework for classification of breast cancer lesions by use of an attention module in modified VGG16 architecture.
We also proposed new ensembled loss function which is the combination of binary cross-entropy and logarithm of the hyperbolic cosine loss to improve the model discrepancy between classified lesions and its labels.
The proposed model in this study outperformed other modified VGG16 architectures with the accuracy of 93% and also the results are competitive with other state of the art frameworks for classification of breast cancer lesions.
arXiv Detail & Related papers (2021-02-23T06:49:12Z) - Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
using Ensemble of Multiscale Deep Neural Networks with Spatial Attention [2.204996105506197]
We propose a 2.5D Convolutional Neural Network (CNN) to handle the difference of inplane and through-plane resolution.
We also propose a spatial attention module to enable the network to focus on small target, and use channel attention to further improve the segmentation performance.
arXiv Detail & Related papers (2021-01-27T08:20:49Z) - ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation [0.0]
We propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN) to accurately segment breast tumors.
ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy.
arXiv Detail & Related papers (2020-09-27T16:42:59Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.