Non-Gaussian generalized two-mode squeezing: applications to two-ensemble spin squeezing and beyond
- URL: http://arxiv.org/abs/2407.00721v1
- Date: Sun, 30 Jun 2024 15:03:29 GMT
- Title: Non-Gaussian generalized two-mode squeezing: applications to two-ensemble spin squeezing and beyond
- Authors: Mikhail Mamaev, Martin Koppenhöfer, Andrew Pocklington, Aashish A. Clerk,
- Abstract summary: We show that the basic structure of these states can be generalized to arbitrary bipartite quantum systems.
We show that these general states can always be stabilized by a relatively simple Markovian dissipative process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic two-mode squeezed states are paradigmatic entangled Gaussian states that have wide utility in quantum information and metrology. Here, we show that the basic structure of these states can be generalized to arbitrary bipartite quantum systems in a manner that allows simultaneous, Heisenberg-limited estimation of two independent parameters for finite-dimensional systems. Further, we show that these general states can always be stabilized by a relatively simple Markovian dissipative process. In the specific case where the two subsystems are ensembles of two-level atoms or spins, our generalized states define a notion of two-mode spin squeezing that is valid beyond the Gaussian limit and that enables true multi-parameter estimation. We discuss how generalized Ramsey measurements allow one to reach the two-parameter quantum Cramer-Rao bound, and how the dissipative preparation scheme is compatible with current experiments.
Related papers
- Equivalence between the second order steady state for spin-Boson model and its quantum mean force Gibbs state [3.1406146587437904]
When a quantum system is non-negligible, its steady state deviates from the textbook Gibbs state.
We show that this steady state is exactly identical to the corresponding generalized Gibbs state.
We use our results to study the dynamics and the steady state of a double quantum dot system under physically relevant choices of parameters.
arXiv Detail & Related papers (2024-11-13T18:49:53Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Analytical approximations for generalized quantum Rabi models [7.708919339137053]
The quantum Rabi model serves as the simplest non-integrable yet solvable model describing the interaction between a two-level system and a single mode of a bosonic field.
We show that the energy spectrum of the generalized quantum Rabi model can be analytically determined by a bi-confluent Fuchsian equation.
arXiv Detail & Related papers (2024-01-11T01:42:17Z) - Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators [6.445506003176312]
Two-mode squeezed states are entangled states with bipartite quantum correlations in continuous-variable systems.
We experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers.
arXiv Detail & Related papers (2023-11-09T07:13:07Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.