Generative prediction of flow fields around an obstacle using the diffusion model
- URL: http://arxiv.org/abs/2407.00735v2
- Date: Mon, 19 May 2025 10:07:07 GMT
- Title: Generative prediction of flow fields around an obstacle using the diffusion model
- Authors: Jiajun Hu, Zhen Lu, Yue Yang,
- Abstract summary: We propose a geometry-to-flow diffusion model that utilizes obstacle shape as input to predict a flow field around an obstacle.<n>A Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step.<n>We train the geometry-to-flow diffusion model using a dataset of flows around simple obstacles, including circles, ellipses, rectangles, and triangles.
- Score: 12.094115138998745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a geometry-to-flow diffusion model that utilizes obstacle shape as input to predict a flow field around an obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-attention mechanism incorporates the geometry as a prompt. We train the geometry-to-flow diffusion model using a dataset of flows around simple obstacles, including circles, ellipses, rectangles, and triangles. For comparison, two CNN-based models and a VAE model are trained on the same dataset. Tests are carried out on flows around obstacles with simple and complex geometries, representing interpolation and generalization on the geometry condition, respectively. To evaluate performance under demanding conditions, the test set incorporates scenarios including crosses and the characters `PKU.' Generated flow fields show that the geometry-to-flow diffusion model is superior to the CNN-based models and the VAE model in predicting instantaneous flow fields and handling complex geometries. Quantitative analysis of the accuracy and divergence demonstrates the model's robustness.
Related papers
- Hessian Geometry of Latent Space in Generative Models [41.94295877935867]
We present a novel method for analyzing the latent space geometry of generative models.<n>The method approximates the posterior distribution of latent variables given generated samples.<n>It is validated on the Ising and TASEP models, outperforming existing baselines in reconstructing thermodynamic quantities.
arXiv Detail & Related papers (2025-06-12T12:17:40Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.
Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''
We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.
We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Elucidating Flow Matching ODE Dynamics with Respect to Data Geometries [10.947094609205765]
Diffusion-based generative models have become the standard for image generation. ODE-based samplers and flow matching models improve efficiency, in comparison to diffusion models, by reducing sampling steps through learned vector fields.
We advance the theory of flow matching models through a comprehensive analysis of sample trajectories, centered on the denoiser that drives ODE dynamics.
Our analysis reveals how trajectories evolve from capturing global data features to local structures, providing the geometric characterization of per-sample behavior in flow matching models.
arXiv Detail & Related papers (2024-12-25T01:17:15Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
Diffusion models are trained to generate new geological realizations from input fields characterized by random noise.
Latent diffusion models are shown to provide realizations that are visually consistent with samples from geomodeling software.
arXiv Detail & Related papers (2024-06-21T01:32:03Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.
We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Fisher Flow Matching for Generative Modeling over Discrete Data [12.69975914345141]
We introduce Fisher-Flow, a novel flow-matching model for discrete data.
Fisher-Flow takes a manifestly geometric perspective by considering categorical distributions over discrete data.
We prove that the gradient flow induced by Fisher-Flow is optimal in reducing the forward KL divergence.
arXiv Detail & Related papers (2024-05-23T15:02:11Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Lecture Notes in Probabilistic Diffusion Models [0.5361320134021585]
Diffusion models are loosely modelled based on non-equilibrium thermodynamics.
The diffusion model learns the data manifold to which the original and thus the reconstructed data samples belong.
Diffusion models have -- unlike variational autoencoder and flow models -- latent variables with the same dimensionality as the original data.
arXiv Detail & Related papers (2023-12-16T09:36:54Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Git Re-Basin: Merging Models modulo Permutation Symmetries [3.5450828190071655]
We show how simple algorithms can be used to fit large networks in practice.
We demonstrate the first (to our knowledge) demonstration of zero mode connectivity between independently trained models.
We also discuss shortcomings in the linear mode connectivity hypothesis.
arXiv Detail & Related papers (2022-09-11T10:44:27Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.