LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation
- URL: http://arxiv.org/abs/2407.00737v1
- Date: Sun, 30 Jun 2024 15:50:32 GMT
- Title: LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation
- Authors: Mushui Liu, Yuhang Ma, Xinfeng Zhang, Yang Zhen, Zeng Zhao, Zhipeng Hu, Bai Liu, Changjie Fan,
- Abstract summary: This paper proposes a framework called bfLLM4GEN, which enhances the semantic understanding ability of text-to-image diffusion models.
LLM4GEN can be easily incorporated into various diffusion models as a plug-and-play component and enhances text-to-image generation.
- Score: 31.560663550775235
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Diffusion Models have exhibited substantial success in text-to-image generation. However, they often encounter challenges when dealing with complex and dense prompts that involve multiple objects, attribute binding, and long descriptions. This paper proposes a framework called \textbf{LLM4GEN}, which enhances the semantic understanding ability of text-to-image diffusion models by leveraging the semantic representation of Large Language Models (LLMs). Through a specially designed Cross-Adapter Module (CAM) that combines the original text features of text-to-image models with LLM features, LLM4GEN can be easily incorporated into various diffusion models as a plug-and-play component and enhances text-to-image generation. Additionally, to facilitate the complex and dense prompts semantic understanding, we develop a LAION-refined dataset, consisting of 1 million (M) text-image pairs with improved image descriptions. We also introduce DensePrompts which contains 7,000 dense prompts to provide a comprehensive evaluation for the text-to-image generation task. With just 10\% of the training data required by recent ELLA, LLM4GEN significantly improves the semantic alignment of SD1.5 and SDXL, demonstrating increases of 7.69\% and 9.60\% in color on T2I-CompBench, respectively. The extensive experiments on DensePrompts also demonstrate that LLM4GEN surpasses existing state-of-the-art models in terms of sample quality, image-text alignment, and human evaluation. The project website is at: \textcolor{magenta}{\url{https://xiaobul.github.io/LLM4GEN/}}
Related papers
- TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation [44.740794326596664]
TheaterGen is a training-free framework that integrates large language models (LLMs) and text-to-image (T2I) models.
Within this framework, LLMs, acting as "Screenwriter", engage in multi-turn interaction, generating and managing a standardized prompt book.
With the effective management of prompt books and character images, TheaterGen significantly improves semantic and contextual consistency in synthesized images.
arXiv Detail & Related papers (2024-04-29T17:58:14Z) - ELLA: Equip Diffusion Models with LLM for Enhanced Semantic Alignment [20.868216061750402]
We introduce an Efficient Large Language Model Adapter, termed ELLA, which equips text-to-image diffusion models with powerful Large Language Models (LLM)
Our approach adapts semantic features at different stages of the denoising process, assisting diffusion models in interpreting lengthy and intricate prompts over sampling timesteps.
To assess text-to-image models in dense prompt following, we introduce a challenging benchmark consisting of 1K dense prompts.
arXiv Detail & Related papers (2024-03-08T08:08:10Z) - Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs [77.86214400258473]
We propose a new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG)
RPG harnesses the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models.
Our framework exhibits wide compatibility with various MLLM architectures.
arXiv Detail & Related papers (2024-01-22T06:16:29Z) - LLMGA: Multimodal Large Language Model based Generation Assistant [53.150283805515926]
We introduce a Multimodal Large Language Model-based Generation Assistant (LLMGA) to assist users in image generation and editing.
We train the MLLM to grasp the properties of image generation and editing, enabling it to generate detailed prompts.
Extensive results show that LLMGA has promising generation and editing capabilities and can enable more flexible and expansive applications.
arXiv Detail & Related papers (2023-11-27T13:37:26Z) - Paragraph-to-Image Generation with Information-Enriched Diffusion Model [67.9265336953134]
ParaDiffusion is an information-enriched diffusion model for paragraph-to-image generation task.
It delves into the transference of the extensive semantic comprehension capabilities of large language models to the task of image generation.
The code and dataset will be released to foster community research on long-text alignment.
arXiv Detail & Related papers (2023-11-24T05:17:01Z) - Generating Images with Multimodal Language Models [78.6660334861137]
We propose a method to fuse frozen text-only large language models with pre-trained image encoder and decoder models.
Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue.
arXiv Detail & Related papers (2023-05-26T19:22:03Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
We present a novel Unified Multi-Modal Latent Diffusion (UMM-Diffusion) which takes joint texts and images containing specified subjects as input sequences.
To be more specific, both input texts and images are encoded into one unified multi-modal latent space.
Our method is able to generate high-quality images with complex semantics from both aspects of input texts and images.
arXiv Detail & Related papers (2023-03-16T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.