Structured and Balanced Multi-component and Multi-layer Neural Networks
- URL: http://arxiv.org/abs/2407.00765v1
- Date: Sun, 30 Jun 2024 17:00:42 GMT
- Title: Structured and Balanced Multi-component and Multi-layer Neural Networks
- Authors: Shijun Zhang, Hongkai Zhao, Yimin Zhong, Haomin Zhou,
- Abstract summary: We propose a balanced multi-component and multi-layer computation network (MMNN)
MMNNs achieve a significant reduction of training parameters compared to fully connected neural networks (FCNNs) or multi-layer perceptrons (MLPs)
- Score: 9.699640804685629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a balanced multi-component and multi-layer neural network (MMNN) structure to approximate functions with complex features with both accuracy and efficiency in terms of degrees of freedom and computation cost. The main idea is motivated by a multi-component, each of which can be approximated effectively by a single-layer network, and multi-layer decomposition in a "divide-and-conquer" type of strategy to deal with a complex function. While an easy modification to fully connected neural networks (FCNNs) or multi-layer perceptrons (MLPs) through the introduction of balanced multi-component structures in the network, MMNNs achieve a significant reduction of training parameters, a much more efficient training process, and a much improved accuracy compared to FCNNs or MLPs. Extensive numerical experiments are presented to illustrate the effectiveness of MMNNs in approximating high oscillatory functions and its automatic adaptivity in capturing localized features.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Multilevel CNNs for Parametric PDEs based on Adaptive Finite Elements [0.0]
A neural network architecture is presented that exploits the multilevel properties of high-dimensional parameter-dependent partial differential equations.
The network is trained with data on adaptively refined finite element meshes.
A complete convergence and complexity analysis is carried out for the adaptive multilevel scheme.
arXiv Detail & Related papers (2024-08-20T13:32:11Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
We introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN)
The proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness.
This study lays the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
arXiv Detail & Related papers (2024-04-01T10:35:35Z) - A Multimodal Intermediate Fusion Network with Manifold Learning for
Stress Detection [1.2430809884830318]
This paper introduces an intermediate multimodal fusion network with manifold learning-based dimensionality reduction.
We compare various dimensionality reduction techniques for different variations of unimodal and multimodal networks.
We observe that the intermediate-level fusion with the Multi-Dimensional Scaling (MDS) manifold method showed promising results with an accuracy of 96.00%.
arXiv Detail & Related papers (2024-03-12T21:06:19Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Real-time Multi-Task Diffractive Deep Neural Networks via
Hardware-Software Co-design [1.6066483376871004]
This work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$2$NNs.
Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$2$NN architecture.
arXiv Detail & Related papers (2020-12-16T12:29:54Z) - Evolving Multi-Resolution Pooling CNN for Monaural Singing Voice
Separation [40.170868770930774]
Monaural Singing Voice Separation (MSVS) is a challenging task and has been studied for decades.
Deep neural networks (DNNs) are the current state-of-the-art methods for MSVS.
We introduce a Neural Architecture Search (NAS) method to the structure design of DNNs for MSVS.
arXiv Detail & Related papers (2020-08-03T12:09:42Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.