Trainable Adaptive Activation Function Structure (TAAFS) Enhances Neural Network Force Field Performance with Only Dozens of Additional Parameters
- URL: http://arxiv.org/abs/2412.14655v1
- Date: Thu, 19 Dec 2024 09:06:39 GMT
- Title: Trainable Adaptive Activation Function Structure (TAAFS) Enhances Neural Network Force Field Performance with Only Dozens of Additional Parameters
- Authors: Enji Li,
- Abstract summary: Trainable Adaptive Function Activation Structure (TAAFS)
We introduce a method that selects distinct mathematical formulations for non-linear activations.
In this study, we integrate TAAFS into a variety of neural network models, resulting in observed accuracy improvements.
- Score: 0.0
- License:
- Abstract: At the heart of neural network force fields (NNFFs) is the architecture of neural networks, where the capacity to model complex interactions is typically enhanced through widening or deepening multilayer perceptrons (MLPs) or by increasing layers of graph neural networks (GNNs). These enhancements, while improving the model's performance, often come at the cost of a substantial increase in the number of parameters. By applying the Trainable Adaptive Activation Function Structure (TAAFS), we introduce a method that selects distinct mathematical formulations for non-linear activations, thereby increasing the precision of NNFFs with an insignificant addition to the parameter count. In this study, we integrate TAAFS into a variety of neural network models, resulting in observed accuracy improvements, and further validate these enhancements through molecular dynamics (MD) simulations using DeepMD.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Bio-Inspired Adaptive Neurons for Dynamic Weighting in Artificial Neural Networks [6.931200003384122]
Traditional neural networks employ fixed weights during inference, limiting their ability to adapt to changing input conditions.
We propose a novel framework for adaptive neural networks, where neuron weights are modeled as functions of the input signal.
arXiv Detail & Related papers (2024-12-02T12:45:30Z) - A Survey on Kolmogorov-Arnold Network [0.0]
Review explores the theoretical foundations, evolution, applications, and future potential of Kolmogorov-Arnold Networks (KAN)
KANs distinguish themselves from traditional neural networks by using learnable, spline- parameterized functions instead of fixed activation functions.
This paper highlights KAN's role in modern neural architectures and outlines future directions to improve its computational efficiency, interpretability, and scalability in data-intensive applications.
arXiv Detail & Related papers (2024-11-09T05:54:17Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
We propose a structured pruning approach based on the activity levels of convolutional kernels named Spiking Channel Activity-based (SCA) network pruning framework.
Inspired by synaptic plasticity mechanisms, our method dynamically adjusts the network's structure by pruning and regenerating convolutional kernels during training, enhancing the model's adaptation to the current target task.
arXiv Detail & Related papers (2024-06-03T07:44:37Z) - Gaussian Process Neural Additive Models [3.7969209746164325]
We propose a new subclass of Neural Additive Models (NAMs) that use a single-layer neural network construction of the Gaussian process via random Fourier features.
GP-NAMs have the advantage of a convex objective function and number of trainable parameters that grows linearly with feature dimensionality.
We show that GP-NAM achieves comparable or better performance in both classification and regression tasks with a large reduction in the number of parameters.
arXiv Detail & Related papers (2024-02-19T20:29:34Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.