Step-Controlled DPO: Leveraging Stepwise Error for Enhanced Mathematical Reasoning
- URL: http://arxiv.org/abs/2407.00782v3
- Date: Mon, 15 Jul 2024 02:03:54 GMT
- Title: Step-Controlled DPO: Leveraging Stepwise Error for Enhanced Mathematical Reasoning
- Authors: Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, Hongsheng Li,
- Abstract summary: Step-Controlled DPO creates negative samples of mathematical reasoning rationales that start making errors at a specified step.
By applying these samples in DPO training, SCDPO can better align the model to understand reasoning errors and output accurate reasoning steps.
- Score: 38.127313175508746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct Preference Optimization (DPO) has proven effective at improving the performance of large language models (LLMs) on downstream tasks such as reasoning and alignment. In this work, we propose Step-Controlled DPO (SCDPO), a method for automatically providing stepwise error supervision by creating negative samples of mathematical reasoning rationales that start making errors at a specified step. By applying these samples in DPO training, SCDPO can better align the model to understand reasoning errors and output accurate reasoning steps. We apply SCDPO to both code-integrated and chain-of-thought solutions, empirically showing that it consistently improves the performance compared to naive DPO on three different SFT models, including one existing SFT model and two models we finetuned. Qualitative analysis of the credit assignment of SCDPO and DPO demonstrates the effectiveness of SCDPO at identifying errors in mathematical solutions. We then apply SCDPO to an InternLM2-20B model, resulting in a 20B model that achieves high scores of 88.5% on GSM8K and 58.1% on MATH, rivaling all other open-source LLMs, showing the great potential of our method.
Related papers
- ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
Learning from human preference is a paradigm used in large-scale language model (LLM) fine-tuning step to better align pretrained LLM to human preference for downstream task.
Recently, Direct Preference Optimization (DPO) has been proposed to solve the alignment problem with a simplified RL-free method.
In this article, we analyze the working mechanism of $beta$ in DPO, disclose its syntax difference between RL algorithm and DPO, and understand the potential shortage brought by the DPO simplification.
arXiv Detail & Related papers (2024-08-19T09:29:31Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
We propose a simple, effective, and data-efficient method called Step-DPO.
Step-DPO treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically.
Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters.
arXiv Detail & Related papers (2024-06-26T17:43:06Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive [15.066029556877721]
We show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples.
We design DPO-Positive (DPOP), a new loss function and training procedure which avoids this failure mode.
Surprisingly, we find that DPOP outperforms DPO and other fine-tuning procedures across a wide variety of datasets and downstream tasks.
arXiv Detail & Related papers (2024-02-20T18:42:34Z) - RS-DPO: A Hybrid Rejection Sampling and Direct Preference Optimization Method for Alignment of Large Language Models [7.676477609461592]
Reinforcement learning from human feedback (RLHF) has been extensively employed to align large language models with user intent.
DPO relies on contrastive responses generated from human annotator and alternative LLM, instead of the policy model.
In this paper, we address both challenges by systematically combining sampling rejection (RS) and DPO.
Our proposed method effectively fine-tunes LLMs with limited resource environments, leading to improved alignment with user intent.
arXiv Detail & Related papers (2024-02-15T16:00:58Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
We propose a novel algorithm for aligning large language models to human preferences.
We show that it consistently outperforms PPO in language tasks by a large margin.
We also provide a theoretical justification supporting the design of our loss function.
arXiv Detail & Related papers (2023-06-04T01:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.