Full-Step-DPO: Self-Supervised Preference Optimization with Step-wise Rewards for Mathematical Reasoning
- URL: http://arxiv.org/abs/2502.14356v1
- Date: Thu, 20 Feb 2025 08:28:11 GMT
- Title: Full-Step-DPO: Self-Supervised Preference Optimization with Step-wise Rewards for Mathematical Reasoning
- Authors: Huimin Xu, Xin Mao, Feng-Lin Li, Xiaobao Wu, Wang Chen, Wei Zhang, Anh Tuan Luu,
- Abstract summary: We propose Full-Step-DPO, a novel DPO framework tailored for mathematical reasoning.
Instead of optimizing only the first erroneous step, it leverages step-wise rewards from the entire reasoning chain.
We show that Full-Step-DPO achieves superior performance compared to state-of-the-art baselines.
- Score: 30.096211889103998
- License:
- Abstract: Direct Preference Optimization (DPO) often struggles with long-chain mathematical reasoning. Existing approaches, such as Step-DPO, typically improve this by focusing on the first erroneous step in the reasoning chain. However, they overlook all other steps and rely heavily on humans or GPT-4 to identify erroneous steps. To address these issues, we propose Full-Step-DPO, a novel DPO framework tailored for mathematical reasoning. Instead of optimizing only the first erroneous step, it leverages step-wise rewards from the entire reasoning chain. This is achieved by training a self-supervised process reward model, which automatically scores each step, providing rewards while avoiding reliance on external signals. Furthermore, we introduce a novel step-wise DPO loss, which dynamically updates gradients based on these step-wise rewards. This endows stronger reasoning capabilities to language models. Extensive evaluations on both in-domain and out-of-domain mathematical reasoning benchmarks across various base language models, demonstrate that Full-Step-DPO achieves superior performance compared to state-of-the-art baselines.
Related papers
- AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence [29.551802573731305]
We propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word.
We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks.
arXiv Detail & Related papers (2025-02-19T18:35:55Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.
Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - Aligning Few-Step Diffusion Models with Dense Reward Difference Learning [81.85515625591884]
Stepwise Diffusion Policy Optimization (SDPO) is an alignment method tailored for few-step diffusion models.
SDPO incorporates dense reward feedback at every intermediate step to ensure consistent alignment across all denoising steps.
SDPO consistently outperforms prior methods in reward-based alignment across diverse step configurations.
arXiv Detail & Related papers (2024-11-18T16:57:41Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Step-Controlled DPO: Leveraging Stepwise Error for Enhanced Mathematical Reasoning [38.127313175508746]
Step-Controlled DPO creates negative samples of mathematical reasoning rationales that start making errors at a specified step.
By applying these samples in DPO training, SCDPO can better align the model to understand reasoning errors and output accurate reasoning steps.
arXiv Detail & Related papers (2024-06-30T17:59:07Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
We propose a simple, effective, and data-efficient method called Step-DPO.
Step-DPO treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically.
Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters.
arXiv Detail & Related papers (2024-06-26T17:43:06Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.