論文の概要: A Unified Approach to Extract Intepretable Rules from Tree Ensembles via Integer Programming
- arxiv url: http://arxiv.org/abs/2407.00843v1
- Date: Sun, 30 Jun 2024 22:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 01:17:19.478631
- Title: A Unified Approach to Extract Intepretable Rules from Tree Ensembles via Integer Programming
- Title(参考訳): 整数プログラミングによる木組から不定形ルールを抽出する統一的手法
- Authors: Lorenzo Bonasera, Emilio Carrizosa,
- Abstract要約: 木アンサンブル法は、教師付き分類と回帰タスクにおいて有効であることが知られている。
我々の研究は、訓練された木アンサンブルから最適化されたルールのリストを抽出することを目的としており、利用者に凝縮された解釈可能なモデルを提供する。
- 参考スコア(独自算出の注目度): 2.1408617023874443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tree ensemble methods represent a popular machine learning model, known for their effectiveness in supervised classification and regression tasks. Their performance derives from aggregating predictions of multiple decision trees, which are renowned for their interpretability properties. However, tree ensemble methods do not reliably exhibit interpretable output. Our work aims to extract an optimized list of rules from a trained tree ensemble, providing the user with a condensed, interpretable model that retains most of the predictive power of the full model. Our approach consists of solving a clean and neat set partitioning problem formulated through Integer Programming. The proposed method works with either tabular or time series data, for both classification and regression tasks, and does not require parameter tuning under the most common setting. Through rigorous computational experiments, we offer statistically significant evidence that our method is competitive with other rule extraction methods and effectively handles time series.
- Abstract(参考訳): ツリーアンサンブル法は、教師付き分類と回帰タスクにおける有効性で知られる、一般的な機械学習モデルを表す。
それらの性能は、その解釈可能性特性で有名な複数の決定木を集約した予測から導かれる。
しかし、ツリーアンサンブル法は解釈可能な出力を確実に示さない。
我々の研究は、訓練された木アンサンブルから最適化されたルールのリストを抽出することを目的としており、ユーザーは完全なモデルの予測力をほとんど保持する凝縮された解釈可能なモデルを提供する。
我々のアプローチは、Integer Programmingによって定式化されたクリーンできちんとした分割問題の解決から成り立っている。
提案手法は,分類タスクと回帰タスクの両方において,表や時系列のデータに対応し,最も一般的な条件下でパラメータチューニングを必要としない。
厳密な計算実験を通じて,本手法は他の規則抽出法と競合し,時系列を効果的に扱うという統計的に有意な証拠を提供する。
関連論文リスト
- Utilising Explainable Techniques for Quality Prediction in a Complex Textiles Manufacturing Use Case [0.0]
本稿では, 複合織物製造データセットにおける製品故障事例を説明可能な手法を用いて分類する手法を開発した。
精度と説明可能性のトレードオフを調べたところ,3種類の木に基づく分類アルゴリズムが評価された。
論文 参考訳(メタデータ) (2024-07-26T06:50:17Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Obtaining Explainable Classification Models using Distributionally
Robust Optimization [12.511155426574563]
特徴値規則の集合を用いて構築した一般化線形モデルについて検討する。
ルールセットの間隔と予測精度の間には、固有のトレードオフが存在する。
我々はこれらの競合する要因に同時に対処するルールセットの集合を学習するための新しい定式化を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:45:34Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Boundは、Mixed Linear Programsという形で最適化タスクを解決するための便利なアプローチである。
解法の効率は、分割する変数を選択するのに使用される分岐に依存する。
分岐を効率的に学習できる強化学習法を提案する。
論文 参考訳(メタデータ) (2023-06-09T14:01:26Z) - Compositional Generalization without Trees using Multiset Tagging and
Latent Permutations [121.37328648951993]
まず、各入力トークンに複数の出力トークンをタグ付けします。
次に、新しいパラメータ化法と置換予測法を用いて、トークンを出力シーケンスに配置する。
我々のモデルは、事前訓練されたセq2seqモデルと、現実的なセマンティック解析タスクに関する先行研究より優れている。
論文 参考訳(メタデータ) (2023-05-26T14:09:35Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
我々は,木組モデルの解釈可能な表現を開発し,その振る舞いに関する貴重な洞察を提供する。
提案モデルは,木組決定関数を近似した浅い解釈可能な木を得るのに有効である。
論文 参考訳(メタデータ) (2023-02-15T10:43:31Z) - Distributional Adaptive Soft Regression Trees [0.0]
本稿では,多変量ソフトスプリットルールを用いた分布回帰木の新しいタイプを提案する。
ソフトスプリットの大きな利点の1つは、滑らかな高次元函数を1つの木で見積もることができることである。
シミュレーションにより,アルゴリズムは優れた特性を有し,様々なベンチマーク手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T08:59:02Z) - Summarization Programs: Interpretable Abstractive Summarization with
Neural Modular Trees [89.60269205320431]
現在の抽象的要約モデルは明確な解釈可能性の欠如に悩まされるか、あるいは不完全理性を与える。
本稿では,バイナリツリーの(順序付き)リストからなる解釈可能なモジュラーフレームワークであるSummarization Program (SP)を提案する。
要約プログラムは、要約文毎に1つのルートノードを含み、各要約文と文書文を個別のツリーで接続する。
論文 参考訳(メタデータ) (2022-09-21T16:50:22Z) - Explaining random forest prediction through diverse rulesets [0.0]
Local Tree eXtractor (LTreeX)は、与えられたテストインスタンスのフォレスト予測を、いくつかの異なるルールで説明することができる。
提案手法は予測性能の点で他の説明可能な手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:54:57Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。