A Unified Approach to Extract Interpretable Rules from Tree Ensembles via Integer Programming
- URL: http://arxiv.org/abs/2407.00843v2
- Date: Mon, 21 Oct 2024 07:43:39 GMT
- Title: A Unified Approach to Extract Interpretable Rules from Tree Ensembles via Integer Programming
- Authors: Lorenzo Bonasera, Emilio Carrizosa,
- Abstract summary: Tree ensemble methods are known for their effectiveness in supervised classification and regression tasks.
Our work aims to extract an optimized list of rules from a trained tree ensemble, providing the user with a condensed, interpretable model.
- Score: 2.1408617023874443
- License:
- Abstract: Tree ensemble methods represent a popular machine learning model, known for their effectiveness in supervised classification and regression tasks. Their performance derives from aggregating predictions of multiple decision trees, which are renowned for their interpretability properties. However, tree ensemble methods do not reliably exhibit interpretable output. Our work aims to extract an optimized list of rules from a trained tree ensemble, providing the user with a condensed, interpretable model that retains most of the predictive power of the full model. Our approach consists of solving a clean and neat set partitioning problem formulated through Integer Programming. The proposed method works with either tabular or time series data, for both classification and regression tasks, and does not require parameter tuning under the most common setting. Through rigorous computational experiments, we offer statistically significant evidence that our method is competitive with other rule extraction methods and effectively handles time series.
Related papers
- Utilising Explainable Techniques for Quality Prediction in a Complex Textiles Manufacturing Use Case [0.0]
This paper develops an approach to classify instances of product failure in a complex textiles manufacturing dataset using explainable techniques.
In investigating the trade-off between accuracy and explainability, three different tree-based classification algorithms were evaluated.
arXiv Detail & Related papers (2024-07-26T06:50:17Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
We propose a novel framework that utilizes large language models (LLMs) to identify effective feature generation rules.
We use decision trees to convey this reasoning information, as they can be easily represented in natural language.
OCTree consistently enhances the performance of various prediction models across diverse benchmarks.
arXiv Detail & Related papers (2024-06-12T08:31:34Z) - Obtaining Explainable Classification Models using Distributionally
Robust Optimization [12.511155426574563]
We study generalized linear models constructed using sets of feature value rules.
An inherent trade-off exists between rule set sparsity and its prediction accuracy.
We propose a new formulation to learn an ensemble of rule sets that simultaneously addresses these competing factors.
arXiv Detail & Related papers (2023-11-03T15:45:34Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Bound is a convenient approach to solving optimization tasks in the form of Mixed Linear Programs.
The efficiency of the solver depends on the branchning used to select a variable for splitting.
We propose a reinforcement learning method that can efficiently learn the branching.
arXiv Detail & Related papers (2023-06-09T14:01:26Z) - Compositional Generalization without Trees using Multiset Tagging and
Latent Permutations [121.37328648951993]
We phrase semantic parsing as a two-step process: we first tag each input token with a multiset of output tokens.
Then we arrange the tokens into an output sequence using a new way of parameterizing and predicting permutations.
Our model outperforms pretrained seq2seq models and prior work on realistic semantic parsing tasks.
arXiv Detail & Related papers (2023-05-26T14:09:35Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
We develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior.
The proposed model is effective in yielding a shallow interpretable tree approxing the tree-ensemble decision function.
arXiv Detail & Related papers (2023-02-15T10:43:31Z) - Distributional Adaptive Soft Regression Trees [0.0]
This article proposes a new type of a distributional regression tree using a multivariate soft split rule.
One great advantage of the soft split is that smooth high-dimensional functions can be estimated with only one tree.
We show by means of extensive simulation studies that the algorithm has excellent properties and outperforms various benchmark methods.
arXiv Detail & Related papers (2022-10-19T08:59:02Z) - Summarization Programs: Interpretable Abstractive Summarization with
Neural Modular Trees [89.60269205320431]
Current abstractive summarization models either suffer from a lack of clear interpretability or provide incomplete rationales.
We propose the Summarization Program (SP), an interpretable modular framework consisting of an (ordered) list of binary trees.
A Summarization Program contains one root node per summary sentence, and a distinct tree connects each summary sentence to the document sentences.
arXiv Detail & Related papers (2022-09-21T16:50:22Z) - Explaining random forest prediction through diverse rulesets [0.0]
Local Tree eXtractor (LTreeX) is able to explain the forest prediction for a given test instance with a few diverse rules.
We show that our proposed approach substantially outperforms other explainable methods in terms of predictive performance.
arXiv Detail & Related papers (2022-03-29T12:54:57Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.