Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations
- URL: http://arxiv.org/abs/2411.01576v1
- Date: Sun, 03 Nov 2024 14:00:20 GMT
- Title: Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations
- Authors: Maximilian Fleissner, Maedeh Zarvandi, Debarghya Ghoshdastidar,
- Abstract summary: We introduce the notion of an explainability-to-noise ratio for mixture models.
We propose an algorithm that takes as input a mixture model and constructs a suitable tree in data-independent time.
We prove upper and lower bounds on the error rate of the resulting decision tree.
- Score: 5.65604054654671
- License:
- Abstract: Decision Trees are one of the backbones of explainable machine learning, and often serve as interpretable alternatives to black-box models. Traditionally utilized in the supervised setting, there has recently also been a surge of interest in decision trees for unsupervised learning. While several works with worst-case guarantees on the clustering cost have appeared, these results are distribution-agnostic, and do not give insight into when decision trees can actually recover the underlying distribution of the data (up to some small error). In this paper, we therefore introduce the notion of an explainability-to-noise ratio for mixture models, formalizing the intuition that well-clustered data can indeed be explained well using a decision tree. We propose an algorithm that takes as input a mixture model and constructs a suitable tree in data-independent time. Assuming sub-Gaussianity of the mixture components, we prove upper and lower bounds on the error rate of the resulting decision tree. In addition, we demonstrate how concept activation vectors can be used to extend explainable clustering to neural networks. We empirically demonstrate the efficacy of our approach on standard tabular and image datasets.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
We develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior.
The proposed model is effective in yielding a shallow interpretable tree approxing the tree-ensemble decision function.
arXiv Detail & Related papers (2023-02-15T10:43:31Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
Convolutional Neural Networks (CNNs) compression is crucial to deploying these models in edge devices with limited resources.
We propose to address the channel pruning problem from a novel perspective by leveraging the interpretations of a model to steer the pruning process.
We tackle this challenge by introducing a selector model that predicts real-time smooth saliency masks for pruned models.
arXiv Detail & Related papers (2022-09-07T01:12:11Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
We design and analyze an algorithm that boosts the error exponent by at least 40% when $rho$ is at least $0.8$.
Our analysis hinges on judiciously exploiting the minute but detectable statistical variation of the samples to allocate more data to parts of the graph.
arXiv Detail & Related papers (2021-10-27T10:45:21Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
We study the generalization performance of decision trees with respect to different generative regression models.
This allows us to elicit their inductive bias, that is, the assumptions the algorithms make (or do not make) to generalize to new data.
We prove a sharp squared error generalization lower bound for a large class of decision tree algorithms fitted to sparse additive models.
arXiv Detail & Related papers (2021-10-18T21:22:40Z) - Dive into Decision Trees and Forests: A Theoretical Demonstration [0.0]
Decision trees use the strategy of "divide-and-conquer" to divide a complex problem on the dependency between input features and labels into smaller ones.
Recent advances have greatly improved their performance in computational advertising, recommender system, information retrieval, etc.
arXiv Detail & Related papers (2021-01-20T16:47:59Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Handling Missing Data in Decision Trees: A Probabilistic Approach [41.259097100704324]
We tackle the problem of handling missing data in decision trees by taking a probabilistic approach.
We use tractable density estimators to compute the "expected prediction" of our models.
At learning time, we fine-tune parameters of already learned trees by minimizing their "expected prediction loss"
arXiv Detail & Related papers (2020-06-29T19:54:54Z) - Linguistically Driven Graph Capsule Network for Visual Question
Reasoning [153.76012414126643]
We propose a hierarchical compositional reasoning model called the "Linguistically driven Graph Capsule Network"
The compositional process is guided by the linguistic parse tree. Specifically, we bind each capsule in the lowest layer to bridge the linguistic embedding of a single word in the original question with visual evidence.
Experiments on the CLEVR dataset, CLEVR compositional generation test, and FigureQA dataset demonstrate the effectiveness and composition generalization ability of our end-to-end model.
arXiv Detail & Related papers (2020-03-23T03:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.