From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos
- URL: http://arxiv.org/abs/2407.00917v2
- Date: Tue, 23 Jul 2024 13:10:28 GMT
- Title: From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos
- Authors: Tanqiu Qiao, Ruochen Li, Frederick W. B. Li, Hubert P. H. Shum,
- Abstract summary: Video-based Human-Object Interaction (HOI) recognition explores the intricate dynamics between humans and objects.
In this work, we propose a novel end-to-end category to scenery framework, CATS.
We construct a scenery interactive graph with these enhanced geometric-visual features as nodes to learn the relationships among human and object categories.
- Score: 9.159660801125812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video-based Human-Object Interaction (HOI) recognition explores the intricate dynamics between humans and objects, which are essential for a comprehensive understanding of human behavior and intentions. While previous work has made significant strides, effectively integrating geometric and visual features to model dynamic relationships between humans and objects in a graph framework remains a challenge. In this work, we propose a novel end-to-end category to scenery framework, CATS, starting by generating geometric features for various categories through graphs respectively, then fusing them with corresponding visual features. Subsequently, we construct a scenery interactive graph with these enhanced geometric-visual features as nodes to learn the relationships among human and object categories. This methodological advance facilitates a deeper, more structured comprehension of interactions, bridging category-specific insights with broad scenery dynamics. Our method demonstrates state-of-the-art performance on two pivotal HOI benchmarks, including the MPHOI-72 dataset for multi-person HOIs and the single-person HOI CAD-120 dataset.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Learning Mutual Excitation for Hand-to-Hand and Human-to-Human
Interaction Recognition [22.538114033191313]
We propose a mutual excitation graph convolutional network (me-GCN) by stacking mutual excitation graph convolution layers.
Me-GC learns mutual information in each layer and each stage of graph convolution operations.
Our proposed me-GC outperforms state-of-the-art GCN-based and Transformer-based methods.
arXiv Detail & Related papers (2024-02-04T10:00:00Z) - HIG: Hierarchical Interlacement Graph Approach to Scene Graph Generation in Video Understanding [8.10024991952397]
Existing methods focus on complex interactivities while leveraging a simple relationship model.
We propose a new approach named Hierarchical Interlacement Graph (HIG), which leverages a unified layer and graph within a hierarchical structure.
Our approach demonstrates superior performance to other methods through extensive experiments conducted in various scenarios.
arXiv Detail & Related papers (2023-12-05T18:47:19Z) - Full-Body Articulated Human-Object Interaction [61.01135739641217]
CHAIRS is a large-scale motion-captured f-AHOI dataset consisting of 16.2 hours of versatile interactions.
CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process.
By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation.
arXiv Detail & Related papers (2022-12-20T19:50:54Z) - Geometric Features Informed Multi-person Human-object Interaction
Recognition in Videos [19.64072251418535]
We argue to combine the benefits of both visual and geometric features in HOI recognition.
We propose a novel Two-level Geometric feature-informed Graph Convolutional Network (2G-GCN)
To demonstrate the novelty and effectiveness of our method in challenging scenarios, we propose a new multi-person HOI dataset (MPHOI-72)
arXiv Detail & Related papers (2022-07-19T17:36:55Z) - A Skeleton-aware Graph Convolutional Network for Human-Object
Interaction Detection [14.900704382194013]
We propose a skeleton-aware graph convolutional network for human-object interaction detection, named SGCN4HOI.
Our network exploits the spatial connections between human keypoints and object keypoints to capture their fine-grained structural interactions via graph convolutions.
It fuses such geometric features with visual features and spatial configuration features obtained from human-object pairs.
arXiv Detail & Related papers (2022-07-11T15:20:18Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
In given video-based Human-Object Interaction scene, modeling thetemporal relationship between humans and objects are the important cue to understand the contextual information presented in the video.
With the effective-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also directly capture inter-time dependencies.
The full use of appearance features, spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance.
arXiv Detail & Related papers (2021-08-19T11:57:27Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.