IBSEN: Director-Actor Agent Collaboration for Controllable and Interactive Drama Script Generation
- URL: http://arxiv.org/abs/2407.01093v1
- Date: Mon, 1 Jul 2024 08:49:57 GMT
- Title: IBSEN: Director-Actor Agent Collaboration for Controllable and Interactive Drama Script Generation
- Authors: Senyu Han, Lu Chen, Li-Min Lin, Zhengshan Xu, Kai Yu,
- Abstract summary: We introduce IBSEN, a director-actor coordinate agent framework that generates drama scripts and makes the plot played by agents more controllable.
The director agent writes plot outlines that the user desires to see, instructs the actor agents to role-play their characters, and reschedules the plot when human players participate in the scenario to ensure the plot is progressing towards the objective.
- Score: 10.64793069233322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have demonstrated their capabilities in storyline creation and human-like character role-playing. Current language model agents mainly focus on reasonable behaviors from the level of individuals, and their behaviors might be hard to constraint on the level of the whole storyline. In this paper we introduce IBSEN, a director-actor coordinate agent framework that generates drama scripts and makes the plot played by agents more controllable. The director agent writes plot outlines that the user desires to see, instructs the actor agents to role-play their characters, and reschedules the plot when human players participate in the scenario to ensure the plot is progressing towards the objective. To evaluate the framework, we create a novel drama plot that involves several actor agents and check the interactions between them under the instruction of the director agent. Evaluation results show that our framework could generate complete, diverse drama scripts from only a rough outline of plot objectives, meanwhile maintaining the characteristics of characters in the drama. Our codes and prompts are available at https://github.com/OpenDFM/ibsen.
Related papers
- StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
We propose a multi-agent framework designed for Customized Storytelling Video Generation (CSVG)
StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process.
Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency.
Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
arXiv Detail & Related papers (2024-11-07T18:00:33Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - The Drama Machine: Simulating Character Development with LLM Agents [1.999925939110439]
This paper explores use of multiple large language model (LLM) agents to simulate complex, dynamic characters in dramatic scenarios.
We introduce a drama machine framework that coordinates interactions between LLM agents playing different 'Ego' and 'Superego' psychological roles.
Results suggest this multi-agent approach can produce more nuanced, adaptive narratives that evolve over a sequence of dialogical turns.
arXiv Detail & Related papers (2024-08-03T09:40:26Z) - From Role-Play to Drama-Interaction: An LLM Solution [57.233049222938675]
This paper introduces emphLLM-based interactive drama, which endows traditional drama with an unprecedented immersion.
We define this new artistic genre by 6 essential elements-plot, character, thought, diction, spectacle and interaction.
We propose emphNarrative Chain to offer finer control over the narrative progression during interaction with players; emphAuto-Drama to synthesize drama scripts given arbitrary stories.
arXiv Detail & Related papers (2024-05-23T07:03:56Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
Large language models (LLMs) can be used to serve as agents to simulate human behaviors.
We introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc.
arXiv Detail & Related papers (2023-10-16T07:58:56Z) - Thespian: Multi-Character Text Role-Playing Game Agents [8.19666118455293]
We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters.
We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt.
We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.
arXiv Detail & Related papers (2023-08-03T16:53:53Z) - Co-Writing Screenplays and Theatre Scripts with Language Models: An
Evaluation by Industry Professionals [5.7445938562326635]
Dramatron generates coherent scripts and screenplays with title, characters, story beats, location descriptions, and dialogue.
We show Dramatron's usefulness as an interactive co-creative system with a user study of 15 theatre and film industry professionals.
We discuss the suitability of Dramatron for co-creativity, ethical considerations -- including plagiarism and bias -- and participatory models for the design and deployment of such tools.
arXiv Detail & Related papers (2022-09-29T17:26:22Z) - Persona-Guided Planning for Controlling the Protagonist's Persona in
Story Generation [71.24817035071176]
We propose a planning-based generation model named CONPER to explicitly model the relationship between personas and events.
Both automatic and manual evaluation results demonstrate that CONPER outperforms state-of-the-art baselines for generating more coherent and persona-controllable stories.
arXiv Detail & Related papers (2022-04-22T13:45:02Z) - Film Trailer Generation via Task Decomposition [65.16768855902268]
We model movies as graphs, where nodes are shots and edges denote semantic relations between them.
We learn these relations using joint contrastive training which leverages privileged textual information from screenplays.
An unsupervised algorithm then traverses the graph and generates trailers that human judges prefer to ones generated by competitive supervised approaches.
arXiv Detail & Related papers (2021-11-16T20:50:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.