The Drama Machine: Simulating Character Development with LLM Agents
- URL: http://arxiv.org/abs/2408.01725v2
- Date: Sat, 31 Aug 2024 04:27:08 GMT
- Title: The Drama Machine: Simulating Character Development with LLM Agents
- Authors: Liam Magee, Vanicka Arora, Gus Gollings, Norma Lam-Saw,
- Abstract summary: This paper explores use of multiple large language model (LLM) agents to simulate complex, dynamic characters in dramatic scenarios.
We introduce a drama machine framework that coordinates interactions between LLM agents playing different 'Ego' and 'Superego' psychological roles.
Results suggest this multi-agent approach can produce more nuanced, adaptive narratives that evolve over a sequence of dialogical turns.
- Score: 1.999925939110439
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper explores use of multiple large language model (LLM) agents to simulate complex, dynamic characters in dramatic scenarios. We introduce a drama machine framework that coordinates interactions between LLM agents playing different 'Ego' and 'Superego' psychological roles. In roleplay simulations, this design allows intersubjective dialogue and intra-subjective internal monologue to develop in parallel. We apply this framework to two dramatic scenarios - an interview and a detective story - and compare character development with and without the Superego's influence. Though exploratory, results suggest this multi-agent approach can produce more nuanced, adaptive narratives that evolve over a sequence of dialogical turns. We discuss different modalities of LLM-based roleplay and character development, along with what this might mean for conceptualization of AI subjectivity. The paper concludes by considering how this approach opens possibilities for thinking of the roles of internal conflict and social performativity in AI-based simulation.
Related papers
- Self-Emotion Blended Dialogue Generation in Social Simulation Agents [18.781929161272853]
This study explores how self-emotion affects the agents' behaviors in dialogue strategies and decision-making within a large language model (LLM)-driven simulation framework.
The results show that incorporating self-emotion helps agents exhibit more human-like dialogue strategies.
In a virtual simulation environment where agents have discussions on multiple topics, we show that self-emotion of agents can significantly influence the decision-making process of the agents.
arXiv Detail & Related papers (2024-08-03T02:11:48Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework [29.166067413153353]
Large Language Models (LLMs) can comprehend human instructions and generate high-quality text.
We introduce the Customisable Conversation Agent Framework, which leverages LLMs to simulate real-world characters.
We present SimsChat, a freely customisable role-playing agent.
arXiv Detail & Related papers (2024-06-25T22:44:17Z) - From Role-Play to Drama-Interaction: An LLM Solution [57.233049222938675]
This paper introduces emphLLM-based interactive drama, which endows traditional drama with an unprecedented immersion.
We define this new artistic genre by 6 essential elements-plot, character, thought, diction, spectacle and interaction.
We propose emphNarrative Chain to offer finer control over the narrative progression during interaction with players; emphAuto-Drama to synthesize drama scripts given arbitrary stories.
arXiv Detail & Related papers (2024-05-23T07:03:56Z) - BattleAgent: Multi-modal Dynamic Emulation on Historical Battles to Complement Historical Analysis [62.60458710368311]
This paper presents BattleAgent, an emulation system that combines the Large Vision-Language Model and Multi-agent System.
It aims to simulate complex dynamic interactions among multiple agents, as well as between agents and their environments.
It emulates both the decision-making processes of leaders and the viewpoints of ordinary participants, such as soldiers.
arXiv Detail & Related papers (2024-04-23T21:37:22Z) - AgentGroupChat: An Interactive Group Chat Simulacra For Better Eliciting Emergent Behavior [44.82972192477596]
We introduce AgentGroupChat, a simulation that delves into the complex role of language in shaping collective behavior.
We set four narrative scenarios based on AgentGroupChat to demonstrate the simulation's capacity to mimic complex language use in group dynamics.
Results reveal that emergent behaviors materialize from a confluence of factors: a conducive environment for extensive information exchange, characters with diverse traits, high linguistic comprehension, and strategic adaptability.
arXiv Detail & Related papers (2024-03-20T09:21:32Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
We introduce Ditto, a self-alignment method for role-play.
This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold.
We present the first comprehensive cross-supervision alignment experiment in the role-play domain.
arXiv Detail & Related papers (2024-01-23T03:56:22Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - LARP: Language-Agent Role Play for Open-World Games [19.80040627487576]
Language Agent for Role-Playing (LARP) is a cognitive architecture that encompasses memory processing and a decision-making assistant.
The framework refines interactions between users and agents, predefined with unique backgrounds and personalities.
It highlights the diverse uses of language models in a range of areas such as entertainment, education, and various simulation scenarios.
arXiv Detail & Related papers (2023-12-24T10:08:59Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
We introduce the first dataset specifically for Jubensha, including character scripts and game rules.
Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game.
To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills.
arXiv Detail & Related papers (2023-12-01T17:33:57Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
We introduce a benchmark named Tachikuma, comprising a Multiple character and novel Object based interaction Estimation task and a supporting dataset.
The dataset captures log data from real-time communications during gameplay, providing diverse, grounded, and complex interactions for further explorations.
We present a simple prompting baseline and evaluate its performance, demonstrating its effectiveness in enhancing interaction understanding.
arXiv Detail & Related papers (2023-07-24T07:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.