SGCCNet: Single-Stage 3D Object Detector With Saliency-Guided Data Augmentation and Confidence Correction Mechanism
- URL: http://arxiv.org/abs/2407.01239v1
- Date: Mon, 1 Jul 2024 12:36:01 GMT
- Title: SGCCNet: Single-Stage 3D Object Detector With Saliency-Guided Data Augmentation and Confidence Correction Mechanism
- Authors: Ao Liang, Wenyu Chen, Jian Fang, Huaici Zhao,
- Abstract summary: Single-stage point-based 3D object detectors face challenges such as inadequate learning of low-quality objects (ILQ) and misalignment between localization accuracy and classification confidence (MLC)
For ILQ, SGCCNet adopts a Saliency-Guided Data Augmentation (SGDA) strategy to enhance the robustness of the model on low-quality objects.
For MLC, we design a Confidence Correction Mechanism ( CCM) specifically for point-based multi-class detectors.
- Score: 7.631190617438259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The single-stage point-based 3D object detectors have attracted widespread research interest due to their advantages of lightweight and fast inference speed. However, they still face challenges such as inadequate learning of low-quality objects (ILQ) and misalignment between localization accuracy and classification confidence (MLC). In this paper, we propose SGCCNet to alleviate these two issues. For ILQ, SGCCNet adopts a Saliency-Guided Data Augmentation (SGDA) strategy to enhance the robustness of the model on low-quality objects by reducing its reliance on salient features. Specifically, We construct a classification task and then approximate the saliency scores of points by moving points towards the point cloud centroid in a differentiable process. During the training process, SGCCNet will be forced to learn from low saliency features through dropping points. Meanwhile, to avoid internal covariate shift and contextual features forgetting caused by dropping points, we add a geometric normalization module and skip connection block in each stage. For MLC, we design a Confidence Correction Mechanism (CCM) specifically for point-based multi-class detectors. This mechanism corrects the confidence of the current proposal by utilizing the predictions of other key points within the local region in the post-processing stage. Extensive experiments on the KITTI dataset demonstrate the generality and effectiveness of our SGCCNet. On the KITTI \textit{test} set, SGCCNet achieves $80.82\%$ for the metric of $AP_{3D}$ on the \textit{Moderate} level, outperforming all other point-based detectors, surpassing IA-SSD and Fast Point R-CNN by $2.35\%$ and $3.42\%$, respectively. Additionally, SGCCNet demonstrates excellent portability for other point-based detectors
Related papers
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - PointCore: Efficient Unsupervised Point Cloud Anomaly Detector Using
Local-Global Features [18.32982981001087]
We propose an unsupervised point cloud anomaly detection framework based on joint local-global features, termed PointCore.
To be specific, PointCore only requires a single memory bank to store local (coordinate) and global (PointMAE) representations.
Experiments on Real3D-AD dataset demonstrate that PointCore achieves competitive inference time and the best performance in both detection and localization.
arXiv Detail & Related papers (2024-03-04T07:51:46Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - CSI: Enhancing the Robustness of 3D Point Cloud Recognition against
Corruption [33.70232326721406]
Real-world safety-critical applications present challenges due to unavoidable data corruption.
In this study, we harness the inherent set property of point cloud data to introduce a novel critical subset identification (CSI) method.
Our CSI framework integrates two pivotal components: density-aware sampling (DAS) and self-entropy minimization (SEM)
arXiv Detail & Related papers (2023-10-05T07:30:52Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection.
Existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting.
We propose a novel ReDB framework tailored for learning to detect all classes at once.
arXiv Detail & Related papers (2023-07-16T04:34:11Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - 3D Object Detection Combining Semantic and Geometric Features from Point
Clouds [19.127930862527666]
We propose a novel end-to-end two-stage 3D object detector named SGNet for point clouds scenes.
The VTPM is a Voxel-Point-Based Module that finally implements 3D object detection in point space.
As of September 19, 2021, for KITTI dataset, SGNet ranked 1st in 3D and BEV detection on cyclists with easy difficulty level, and 2nd in the 3D detection of moderate cyclists.
arXiv Detail & Related papers (2021-10-10T04:43:27Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z) - Triangle-Net: Towards Robustness in Point Cloud Learning [0.0]
We propose a novel approach for 3D classification that can simultaneously achieve invariance towards rotation, positional shift, scaling, and is robust to point sparsity.
We show that our approach outperforms PointNet and 3DmFV by 35.0% and 28.1% respectively in ModelNet 40 classification tasks.
arXiv Detail & Related papers (2020-02-27T20:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.