On the Effect of Robot Errors on Human Teaching Dynamics
- URL: http://arxiv.org/abs/2409.09827v1
- Date: Sun, 15 Sep 2024 19:02:34 GMT
- Title: On the Effect of Robot Errors on Human Teaching Dynamics
- Authors: Jindan Huang, Isaac Sheidlower, Reuben M. Aronson, Elaine Schaertl Short,
- Abstract summary: We investigate how the presence and severity of robot errors affect three dimensions of human teaching dynamics.
Results show that people tend to spend more time teaching robots with errors.
Our findings offer valuable insights for designing effective interfaces for interactive learning.
- Score: 1.7249361224827533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human-in-the-loop learning is gaining popularity, particularly in the field of robotics, because it leverages human knowledge about real-world tasks to facilitate agent learning. When people instruct robots, they naturally adapt their teaching behavior in response to changes in robot performance. While current research predominantly focuses on integrating human teaching dynamics from an algorithmic perspective, understanding these dynamics from a human-centered standpoint is an under-explored, yet fundamental problem. Addressing this issue will enhance both robot learning and user experience. Therefore, this paper explores one potential factor contributing to the dynamic nature of human teaching: robot errors. We conducted a user study to investigate how the presence and severity of robot errors affect three dimensions of human teaching dynamics: feedback granularity, feedback richness, and teaching time, in both forced-choice and open-ended teaching contexts. The results show that people tend to spend more time teaching robots with errors, provide more detailed feedback over specific segments of a robot's trajectory, and that robot error can influence a teacher's choice of feedback modality. Our findings offer valuable insights for designing effective interfaces for interactive learning and optimizing algorithms to better understand human intentions.
Related papers
- Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
We test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context.
Taking inspiration from child- caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs.
arXiv Detail & Related papers (2024-07-01T13:35:08Z) - Human Reactions to Incorrect Answers from Robots [0.0]
The study systematically studies how trust dynamics and system design are affected by human responses to robot failures.
Results show that participants' trust in robotic technologies increased significantly when robots acknowledged their errors or limitations.
The study advances the science of human-robot interaction and promotes a wider adoption of robotic technologies.
arXiv Detail & Related papers (2024-03-21T11:00:11Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - How Do Human Users Teach a Continual Learning Robot in Repeated
Interactions? [7.193217430660011]
We take a human-centered approach to continual learning, to understand how humans teach continual learning robots over the long term.
We conducted an in-person study with 40 participants that interacted with a continual learning robot in 200 sessions.
An extensive qualitative and quantitative analysis of the data collected in the study shows that there is significant variation among the teaching styles of individual users.
arXiv Detail & Related papers (2023-06-30T20:29:48Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Towards Modeling and Influencing the Dynamics of Human Learning [26.961274302321343]
We take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality.
Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations.
We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem.
arXiv Detail & Related papers (2023-01-02T23:59:45Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot [58.2026611111328]
Looking at a person's face is one of the mechanisms that humans rely on when it comes to filtering speech in noisy environments.
Having a robot that can look toward a speaker could benefit ASR performance in challenging environments.
We propose a self-supervised reinforcement learning-based framework inspired by the early development of humans.
arXiv Detail & Related papers (2020-11-12T18:02:15Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z) - A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives [44.45953630612019]
Recent success of machine learning in many domains has been overwhelming.
We will give a broad overview of behaviors that have been learned and used on real robots.
arXiv Detail & Related papers (2019-06-05T07:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.