論文の概要: Preserving Full Degradation Details for Blind Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2407.01299v2
- Date: Tue, 2 Jul 2024 08:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:20:18.375446
- Title: Preserving Full Degradation Details for Blind Image Super-Resolution
- Title(参考訳): Blind Image Super-Resolution における完全劣化の保存
- Authors: Hongda Liu, Longguang Wang, Ye Zhang, Kaiwen Xue, Shunbo Zhou, Yulan Guo,
- Abstract要約: 劣化低分解能画像(LR)の再生による劣化表現の学習方法を提案する。
復調器に入力LR画像の再構成を誘導することにより、その表現に全劣化情報をエンコードすることができる。
実験により, 精度が高く, 強靭な劣化情報を抽出できることが確認された。
- 参考スコア(独自算出の注目度): 40.152015542099704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of image super-resolution relies heavily on the accuracy of degradation information, especially under blind settings. Due to absence of true degradation models in real-world scenarios, previous methods learn distinct representations by distinguishing different degradations in a batch. However, the most significant degradation differences may provide shortcuts for the learning of representations such that subtle difference may be discarded. In this paper, we propose an alternative to learn degradation representations through reproducing degraded low-resolution (LR) images. By guiding the degrader to reconstruct input LR images, full degradation information can be encoded into the representations. In addition, we develop an energy distance loss to facilitate the learning of the degradation representations by introducing a bounded constraint. Experiments show that our representations can extract accurate and highly robust degradation information. Moreover, evaluations on both synthetic and real images demonstrate that our ReDSR achieves state-of-the-art performance for the blind SR tasks.
- Abstract(参考訳): 画像超解像の性能は、特にブラインド条件下での劣化情報の精度に大きく依存する。
実世界のシナリオでは真の劣化モデルがないため、以前の手法はバッチ内の異なる劣化を区別することで、異なる表現を学習する。
しかし、最も顕著な劣化差は、微妙な違いが捨てられるような表現の学習のショートカットを与えるかもしれない。
本稿では,劣化した低分解能画像(LR)を再現することで,劣化表現を学習する手法を提案する。
復調器に入力LR画像の再構成を誘導することにより、その表現に全劣化情報をエンコードすることができる。
さらに, 境界制約を導入することにより, 劣化表現の学習を容易にするためのエネルギー距離損失を開発する。
実験により, 精度が高く, 強靭な劣化情報を抽出できることが確認された。
さらに、合成画像と実画像の両方において、我々のReDSRがブラインドSRタスクの最先端性能を達成することを示す。
関連論文リスト
- Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
急激な劣化モデルに基づくブラインド・スーパーレゾリューション(SR)は、コミュニティで注目を集めている。
本稿では,CdCL(Content-decoupled Contrastive Learning-based blind image super- resolution)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-10T04:51:43Z) - DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution [19.33582308829547]
本稿では, 精度, 精細度, 高忠実度画像復元のために, 劣化対応言語プロンプトを活用することを提案する。
提案手法は,新しい最先端の知覚品質レベルを実現する。
論文 参考訳(メタデータ) (2024-06-24T09:30:36Z) - DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion [27.52552274944687]
低解像度画像のコンテンツや劣化を認識する拡散モデルの能力を高める新しい2段階の劣化認識フレームワークを提案する。
最初の段階では、教師なしのコントラスト学習を用いて画像劣化の表現を得る。
第2段階では、分解対応モジュールを単純化されたControlNetに統合し、様々な劣化への柔軟な適応を可能にします。
論文 参考訳(メタデータ) (2024-03-31T12:07:04Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Knowledge Distillation based Degradation Estimation for Blind
Super-Resolution [146.0988597062618]
Blind画像超解像(Blind-SR)は、対応する低解像度(LR)入力画像から高解像度(HR)画像を未知の劣化で復元することを目的としている。
劣化推定器のトレーニングを監督するために、複数の劣化組合せの具体的なラベルを提供することは不可能である。
本稿では,知識蒸留に基づく暗黙劣化推定ネットワーク(KD-IDE)と効率的なSRネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T11:59:07Z) - Unsupervised Degradation Representation Learning for Blind
Super-Resolution [27.788488575616032]
CNNベースのスーパーリゾリューション(SR)手法は、実際の劣化が仮定と異なる場合に深刻なパフォーマンス低下を被る。
明示的な劣化推定を伴わない盲点SRのための教師なし劣化表現学習手法を提案する。
我々のネットワークは、ブラインドSRタスクの最先端性能を達成する。
論文 参考訳(メタデータ) (2021-04-01T11:57:42Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
現実のシナリオにおける人物再識別(Re-ID)は通常、低解像度、弱い照明、ぼやけ、悪天候などの様々な劣化要因に悩まされる。
本稿では,現実世界のRe-IDを対象とした劣化不変学習フレームワークを提案する。
自己教師付き不整合表現学習戦略を導入することにより,個人性に関連する頑健な特徴を同時に抽出することができる。
論文 参考訳(メタデータ) (2020-04-10T07:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。