Robot Instance Segmentation with Few Annotations for Grasping
- URL: http://arxiv.org/abs/2407.01302v2
- Date: Tue, 11 Feb 2025 19:56:18 GMT
- Title: Robot Instance Segmentation with Few Annotations for Grasping
- Authors: Moshe Kimhi, David Vainshtein, Chaim Baskin, Dotan Di Castro,
- Abstract summary: We propose a novel framework that combines Semi-Supervised Learning (SSL) with Learning Through Interaction (LTI)<n>Our approach exploits partially annotated data through self-supervision and incorporates temporal context using pseudo-sequences generated from unlabeled still images.<n>We validate our method on two common benchmarks, ARMBench mix-object-tote and OCID, where it achieves state-of-the-art performance.
- Score: 10.005879464111915
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The ability of robots to manipulate objects relies heavily on their aptitude for visual perception. In domains characterized by cluttered scenes and high object variability, most methods call for vast labeled datasets, laboriously hand-annotated, with the aim of training capable models. Once deployed, the challenge of generalizing to unfamiliar objects implies that the model must evolve alongside its domain. To address this, we propose a novel framework that combines Semi-Supervised Learning (SSL) with Learning Through Interaction (LTI), allowing a model to learn by observing scene alterations and leverage visual consistency despite temporal gaps without requiring curated data of interaction sequences. As a result, our approach exploits partially annotated data through self-supervision and incorporates temporal context using pseudo-sequences generated from unlabeled still images. We validate our method on two common benchmarks, ARMBench mix-object-tote and OCID, where it achieves state-of-the-art performance. Notably, on ARMBench, we attain an $\text{AP}_{50}$ of $86.37$, almost a $20\%$ improvement over existing work, and obtain remarkable results in scenarios with extremely low annotation, achieving an $\text{AP}_{50}$ score of $84.89$ with just $1 \%$ of annotated data compared to $72$ presented in ARMBench on the fully annotated counterpart.
Related papers
- One-Shot Open Affordance Learning with Foundation Models [54.15857111929812]
We introduce One-shot Open Affordance Learning (OOAL), where a model is trained with just one example per base object category.
We propose a vision-language framework with simple and effective designs that boost the alignment between visual features and affordance text embeddings.
Experiments on two affordance segmentation benchmarks show that the proposed method outperforms state-of-the-art models with less than 1% of the full training data.
arXiv Detail & Related papers (2023-11-29T16:23:06Z) - S$^3$Track: Self-supervised Tracking with Soft Assignment Flow [45.77333923477176]
We study self-supervised multiple object tracking without using any video-level association labels.
We propose differentiable soft object assignment for object association.
We evaluate our proposed model on the KITTI, nuScenes, and Argoverse datasets.
arXiv Detail & Related papers (2023-05-17T06:25:40Z) - Exploring the Limits of Deep Image Clustering using Pretrained Models [1.1060425537315088]
We present a methodology that learns to classify images without labels by leveraging pretrained feature extractors.
We propose a novel objective that learns associations between image features by introducing a variant of pointwise mutual information together with instance weighting.
arXiv Detail & Related papers (2023-03-31T08:56:29Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - S$^2$Contact: Graph-based Network for 3D Hand-Object Contact Estimation
with Semi-Supervised Learning [70.72037296392642]
We propose a novel semi-supervised framework that allows us to learn contact from monocular images.
Specifically, we leverage visual and geometric consistency constraints in large-scale datasets for generating pseudo-labels.
We show benefits from using a contact map that rules hand-object interactions to produce more accurate reconstructions.
arXiv Detail & Related papers (2022-08-01T14:05:23Z) - Towards Variable-Length Textual Adversarial Attacks [68.27995111870712]
It is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data.
In this paper, we propose variable-length textual adversarial attacks(VL-Attack)
Our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.
arXiv Detail & Related papers (2021-04-16T14:37:27Z) - Mutual Graph Learning for Camouflaged Object Detection [31.422775969808434]
A major challenge is that intrinsic similarities between foreground objects and background surroundings make the features extracted by deep model indistinguishable.
We design a novel Mutual Graph Learning model, which generalizes the idea of conventional mutual learning from regular grids to the graph domain.
In contrast to most mutual learning approaches that use a shared function to model all between-task interactions, MGL is equipped with typed functions for handling different complementary relations.
arXiv Detail & Related papers (2021-04-03T10:14:39Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.