論文の概要: AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction
- arxiv url: http://arxiv.org/abs/2407.01436v1
- Date: Mon, 1 Jul 2024 16:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 20:41:15.477518
- Title: AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction
- Title(参考訳): AdaOcc:3次元作業とフロー予測のための適応型前方視変換とフローモデリング
- Authors: Dubing Chen, Wencheng Han, Jin Fang, Jianbing Shen,
- Abstract要約: CVPR 2024 における nuScenes Open-Occ データセットチャレンジにおいて,視覚中心の3次元活動とフロー予測トラックのソリューションを提案する。
我々の革新的なアプローチは、適応的なフォワード・ビュー・トランスフォーメーションとフロー・モデリングを取り入れることで、3次元の占有率とフロー予測を向上させる2段階のフレームワークである。
提案手法は回帰と分類を組み合わせることで,様々な場面におけるスケールの変動に対処し,予測フローを利用して将来のフレームに現行のボクセル特徴をワープする。
- 参考スコア(独自算出の注目度): 56.72301849123049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this technical report, we present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ Dataset Challenge at CVPR 2024. Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling. Initially, we independently train the occupancy model, followed by flow prediction using sequential frame integration. Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth. Experimental results on the nuScenes dataset demonstrate significant improvements in accuracy and robustness, showcasing the effectiveness of our approach in real-world scenarios. Our single model based on Swin-Base ranks second on the public leaderboard, validating the potential of our method in advancing autonomous car perception systems.
- Abstract(参考訳): 本稿では,CVPR 2024 における nuScenes Open-Occ Dataset Challenge において,視覚中心の3次元活動とフロー予測の手法を提案する。
我々の革新的なアプローチは、適応的なフォワード・ビュー・トランスフォーメーションとフロー・モデリングを取り入れることで、3次元の占有率とフロー予測を向上させる2段階のフレームワークである。
当初我々は、占有モデルを個別に訓練し、続いてシーケンシャルフレーム統合を用いたフロー予測を行った。
提案手法は回帰と分類を組み合わせることで,様々な場面におけるスケールの変動に対処し,予測フローを利用して将来のフレームに現行のボクセル特徴をワープする。
nuScenesデータセットの実験結果から,実世界のシナリオにおけるアプローチの有効性を示すとともに,精度とロバスト性に大きな改善が見られた。
Swin-Baseをベースとした1つのモデルは、公共のリーダーボードで2位にランクインし、自動運転車の認識システムの進歩における我々の方法の可能性を検証する。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Occ Flowは、カメラ入力のみを使用して、関節の3D占有率と占有率の予測を行う最初の自己教師型作業である。
我々のアプローチは、動的オブジェクトの依存関係をキャプチャするために、新しい注意に基づく時間融合モジュールを組み込んでいる。
本手法は3次元容積流れ場に微分可能レンダリングを拡張する。
論文 参考訳(メタデータ) (2024-07-10T12:20:11Z) - Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
マルチエージェント動作予測問題に対するベクトル化された世界モデルに基づくアプローチであるVRDを紹介する。
本手法では,従来のオープンループトレーニングシステムと,新しい夢のクローズループトレーニングパイプラインを組み合わせる。
本モデルでは,1つの予測ミスレート測定値に対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-20T15:34:17Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
本稿では,認識,予測,計画タスクを同時に行うための,より代表的な特徴の集合に対する時空間的特徴学習手法を提案する。
私たちの知識を最大限に活用するために、私たちは、解釈可能なエンドツーエンドの自動運転システムの各部分を体系的に調査した最初の人です。
論文 参考訳(メタデータ) (2022-07-15T16:57:43Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
自己監督学習に基づくマルチフレーム一眼的シーンフローネットワークを導入。
自己監督学習に基づく単眼的シーンフロー法における最新の精度を観察する。
論文 参考訳(メタデータ) (2021-05-05T17:49:55Z) - FloMo: Tractable Motion Prediction with Normalizing Flows [0.0]
ノイズサンプルと将来の動き分布の正規化フローによる密度推定問題として動作予測をモデル化する。
我々のモデルはFloMoと呼ばれ、単一のネットワークパスで確率を計算でき、最大推定で直接訓練することができる。
提案手法は,3つの一般的な予測データセットにおいて最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-03-05T11:35:27Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSFは立体映像からの3次元シーン構造と動きの同時再構成のための自己教師型フレームワークである。
提案モデルでは,課題の画像の相違やシーンフローを確実に予測できることを示す。
最先端技術よりも優れた一般化を実現し、目に見えない領域に迅速かつ堅牢に適応する。
論文 参考訳(メタデータ) (2020-06-19T17:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。