DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models
- URL: http://arxiv.org/abs/2407.01519v4
- Date: Tue, 25 Mar 2025 15:35:12 GMT
- Title: DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models
- Authors: Chang-Han Yeh, Chin-Yang Lin, Zhixiang Wang, Chi-Wei Hsiao, Ting-Hsuan Chen, Hau-Shiang Shiu, Yu-Lun Liu,
- Abstract summary: We present DiffIR2VR-Zero, a zero-shot framework that enables any pre-trained image restoration model to perform high-quality video restoration without additional training.<n>Our framework works with any image restoration diffusion model, providing a versatile solution for video enhancement without task-specific training or modifications.
- Score: 9.145545884814327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present DiffIR2VR-Zero, a zero-shot framework that enables any pre-trained image restoration diffusion model to perform high-quality video restoration without additional training. While image diffusion models have shown remarkable restoration capabilities, their direct application to video leads to temporal inconsistencies, and existing video restoration methods require extensive retraining for different degradation types. Our approach addresses these challenges through two key innovations: a hierarchical latent warping strategy that maintains consistency across both keyframes and local frames, and a hybrid token merging mechanism that adaptively combines optical flow and feature matching. Through extensive experiments, we demonstrate that our method not only maintains the high-quality restoration of base diffusion models but also achieves superior temporal consistency across diverse datasets and degradation conditions, including challenging scenarios like 8$\times$ super-resolution and severe noise. Importantly, our framework works with any image restoration diffusion model, providing a versatile solution for video enhancement without task-specific training or modifications.
Related papers
- Temporal-Consistent Video Restoration with Pre-trained Diffusion Models [51.47188802535954]
Video restoration (VR) aims to recover high-quality videos from degraded ones.
Recent zero-shot VR methods using pre-trained diffusion models (DMs) suffer from approximation errors during reverse diffusion and insufficient temporal consistency.
We present a novel a Posterior Maximum (MAP) framework that directly parameterizes video frames in the seed space of DMs, eliminating approximation errors.
arXiv Detail & Related papers (2025-03-19T03:41:56Z) - TDM: Temporally-Consistent Diffusion Model for All-in-One Real-World Video Restoration [13.49297560533422]
Our method can restore various types of video degradation with a single unified model.
Our method advances the video restoration task by providing a unified solution that enhances video quality across multiple applications.
arXiv Detail & Related papers (2025-01-04T12:15:37Z) - Buffer Anytime: Zero-Shot Video Depth and Normal from Image Priors [54.8852848659663]
Buffer Anytime is a framework for estimation of depth and normal maps (which we call geometric buffers) from video.
We demonstrate high-quality video buffer estimation by leveraging single-image priors with temporal consistency constraints.
arXiv Detail & Related papers (2024-11-26T09:28:32Z) - Efficient Video Face Enhancement with Enhanced Spatial-Temporal Consistency [36.939731355462264]
This study proposes a novel and efficient blind video face enhancement method.
It restores high-quality videos from their compressed low-quality versions with an effective de-flickering mechanism.
Experiments conducted on the VFHQ-Test dataset demonstrate that our method surpasses the current state-of-the-art blind face video restoration and de-flickering methods on both efficiency and effectiveness.
arXiv Detail & Related papers (2024-11-25T15:14:36Z) - Quanta Video Restoration [12.708095170886313]
We introduce Quanta Video Restoration (QUIVER), an end-to-end trainable network built on the core ideas of classical quanta restoration methods.
On simulated and real data, QUIVER outperforms existing quanta restoration methods by a significant margin.
arXiv Detail & Related papers (2024-10-19T05:50:12Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Zero-Shot Video Restoration and Enhancement Using Pre-Trained Image Diffusion Model [15.170889156729777]
We propose the first framework for zero-shot video restoration and enhancement based on the pre-trained image diffusion model.
Our method is a plug-and-play module that can be inserted into any diffusion-based image restoration or enhancement methods.
arXiv Detail & Related papers (2024-07-02T05:31:59Z) - ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
We propose a training-free video method for generative video models in a plug-and-play manner.
We transform a video model into a self-cascaded video diffusion model with the designed hidden state correction modules.
Our training-free method is even comparable to trained models supported by huge compute resources and large-scale datasets.
arXiv Detail & Related papers (2024-06-03T00:31:13Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
This work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR)
Our base diffusion model is the image restoration SDE (IR-SDE)
arXiv Detail & Related papers (2024-04-15T12:34:21Z) - Make a Cheap Scaling: A Self-Cascade Diffusion Model for
Higher-Resolution Adaptation [112.08287900261898]
This paper proposes a novel self-cascade diffusion model for rapid adaptation to higher-resolution image and video generation.
Our approach achieves a 5X training speed-up and requires only an additional 0.002M tuning parameters.
Experiments demonstrate that our approach can quickly adapt to higher resolution image and video synthesis by fine-tuning for just 10k steps, with virtually no additional inference time.
arXiv Detail & Related papers (2024-02-16T07:48:35Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - VCISR: Blind Single Image Super-Resolution with Video Compression
Synthetic Data [18.877077302923713]
We present a video compression-based degradation model to synthesize low-resolution image data in the blind SISR task.
Our proposed image synthesizing method is widely applicable to existing image datasets.
By introducing video coding artifacts to SISR degradation models, neural networks can super-resolve images with the ability to restore video compression degradations.
arXiv Detail & Related papers (2023-11-02T05:24:19Z) - Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation [92.55296042611886]
We propose a framework called "Reuse and Diffuse" dubbed $textitVidRD$ to produce more frames following the frames already generated by an LDM.
We also propose a set of strategies for composing video-text data that involve diverse content from multiple existing datasets.
arXiv Detail & Related papers (2023-09-07T08:12:58Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
arXiv Detail & Related papers (2023-09-04T14:18:00Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - A Simple Baseline for Video Restoration with Grouped Spatial-temporal
Shift [36.71578909392314]
In this study, we propose a simple yet effective framework for video restoration.
Our approach is based on grouped spatial-temporal shift, which is a lightweight and straightforward technique.
Our framework outperforms the previous state-of-the-art method, while using less than a quarter of its computational cost.
arXiv Detail & Related papers (2022-06-22T02:16:47Z) - Recurrent Video Restoration Transformer with Guided Deformable Attention [116.1684355529431]
We propose RVRT, which processes local neighboring frames in parallel within a globally recurrent framework.
RVRT achieves state-of-the-art performance on benchmark datasets with balanced model size, testing memory and runtime.
arXiv Detail & Related papers (2022-06-05T10:36:09Z) - VRT: A Video Restoration Transformer [126.79589717404863]
Video restoration (e.g., video super-resolution) aims to restore high-quality frames from low-quality frames.
We propose a Video Restoration Transformer (VRT) with parallel frame prediction and long-range temporal dependency modelling abilities.
arXiv Detail & Related papers (2022-01-28T17:54:43Z) - Boosting the Performance of Video Compression Artifact Reduction with
Reference Frame Proposals and Frequency Domain Information [31.053879834073502]
We propose an effective reference frame proposal strategy to boost the performance of the existing multi-frame approaches.
Experimental results show that our method achieves better fidelity and perceptual performance on MFQE 2.0 dataset than the state-of-the-art methods.
arXiv Detail & Related papers (2021-05-31T13:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.