Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration
- URL: http://arxiv.org/abs/2309.01627v3
- Date: Mon, 11 Dec 2023 02:30:02 GMT
- Title: Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration
- Authors: Yuanshuo Cheng, Mingwen Shao, Yecong Wan, Yuanjian Qiao, Wangmeng Zuo,
Deyu Meng
- Abstract summary: We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
- Score: 78.14941737723501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Video Restoration (VR) methods always necessitate the individual
deployment of models for each adverse weather to remove diverse adverse weather
degradations, lacking the capability for adaptive processing of degradations.
Such limitation amplifies the complexity and deployment costs in practical
applications. To overcome this deficiency, in this paper, we propose a
Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR, which enables
the employment of a single model to remove diverse degradations for the first
time. Specifically, the proposed CDUN accomplishes a novel iterative
optimization framework, capable of restoring frames corrupted by corresponding
degradations according to the degradation features given in advance. To empower
the framework for eliminating diverse degradations, we devise a Sequence-wise
Adaptive Degradation Estimator (SADE) to estimate degradation features for the
input corrupted video. By orchestrating these two cascading procedures, CDUN
achieves adaptive processing for diverse degradation. In addition, we introduce
a window-based inter-frame fusion strategy to utilize information from more
adjacent frames. This strategy involves the progressive stacking of temporal
windows in multiple iterations, effectively enlarging the temporal receptive
field and enabling each frame's restoration to leverage information from
distant frames. Extensive experiments demonstrate that the proposed method
achieves state-of-the-art performance in All-In-One VR.
Related papers
- Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
We propose Universal Image Restoration (UIR), a new task setting that requires models to be trained on a set of degradation bases and then remove any degradation that these bases can potentially compose in a zero-shot manner.
Inspired by the Chain-of-Thought which prompts LLMs to address problems step-by-step, we propose the Chain-of-Restoration (CoR)
CoR instructs models to step-by-step remove unknown composite degradations.
arXiv Detail & Related papers (2024-10-11T10:21:42Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow.
Our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios.
OneRestore is a novel transformer-based framework designed for adaptive, controllable scene restoration.
arXiv Detail & Related papers (2024-07-05T16:27:00Z) - Low-Light Video Enhancement via Spatial-Temporal Consistent Illumination and Reflection Decomposition [68.6707284662443]
Low-Light Video Enhancement (LLVE) seeks to restore dynamic and static scenes plagued by severe invisibility and noise.
One critical aspect is formulating a consistency constraint specifically for temporal-spatial illumination and appearance enhanced versions.
We present an innovative video Retinex-based decomposition strategy that operates without the need for explicit supervision.
arXiv Detail & Related papers (2024-05-24T15:56:40Z) - DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image
Restoration [5.573836220587265]
This work proposes an efficient Dynamic Reference Modeling paradigm (DRM-IR)
DRM-IR consists of task-adaptive degradation modeling and model-based image restoring.
Experiments on multiple benchmark datasets show that our DRM-IR achieves state-of-the-art in All-In-One IR.
arXiv Detail & Related papers (2023-07-15T02:42:19Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Recurrent Video Restoration Transformer with Guided Deformable Attention [116.1684355529431]
We propose RVRT, which processes local neighboring frames in parallel within a globally recurrent framework.
RVRT achieves state-of-the-art performance on benchmark datasets with balanced model size, testing memory and runtime.
arXiv Detail & Related papers (2022-06-05T10:36:09Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.