Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning
- URL: http://arxiv.org/abs/2407.01531v2
- Date: Thu, 24 Oct 2024 22:01:44 GMT
- Title: Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning
- Authors: Yixiao Wang, Yifei Zhang, Mingxiao Huo, Ran Tian, Xiang Zhang, Yichen Xie, Chenfeng Xu, Pengliang Ji, Wei Zhan, Mingyu Ding, Masayoshi Tomizuka,
- Abstract summary: We introduce a sparse, reusable, and flexible policy, Sparse Diffusion Policy (SDP)
SDP selectively activates experts and skills, enabling efficient and task-specific learning without retraining the entire model.
Demos and codes can be found in https://forrest-110.io/sparse_diffusion_policy/.
- Score: 61.294110816231886
- License:
- Abstract: The increasing complexity of tasks in robotics demands efficient strategies for multitask and continual learning. Traditional models typically rely on a universal policy for all tasks, facing challenges such as high computational costs and catastrophic forgetting when learning new tasks. To address these issues, we introduce a sparse, reusable, and flexible policy, Sparse Diffusion Policy (SDP). By adopting Mixture of Experts (MoE) within a transformer-based diffusion policy, SDP selectively activates experts and skills, enabling efficient and task-specific learning without retraining the entire model. SDP not only reduces the burden of active parameters but also facilitates the seamless integration and reuse of experts across various tasks. Extensive experiments on diverse tasks in both simulations and real world show that SDP 1) excels in multitask scenarios with negligible increases in active parameters, 2) prevents forgetting in continual learning of new tasks, and 3) enables efficient task transfer, offering a promising solution for advanced robotic applications. Demos and codes can be found in https://forrest-110.github.io/sparse_diffusion_policy/.
Related papers
- EquiBot: SIM(3)-Equivariant Diffusion Policy for Generalizable and Data Efficient Learning [36.0274770291531]
We propose Equibot, a robust, data-efficient, and generalizable approach for robot manipulation task learning.
Our approach combines SIM(3)-equivariant neural network architectures with diffusion models.
We show that our method can easily generalize to novel objects and scenes after learning from just 5 minutes of human demonstrations in each task.
arXiv Detail & Related papers (2024-07-01T17:09:43Z) - GenSim: Generating Robotic Simulation Tasks via Large Language Models [34.79613485106202]
GenSim aims to automatically generate rich simulation environments and expert demonstrations.
We use GPT4 to expand the existing benchmark by ten times to over 100 tasks.
With minimal sim-to-real adaptation, multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world.
arXiv Detail & Related papers (2023-10-02T17:23:48Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Discovery of Options via Meta-Learned Subgoals [59.2160583043938]
Temporal abstractions in the form of options have been shown to help reinforcement learning (RL) agents learn faster.
We introduce a novel meta-gradient approach for discovering useful options in multi-task RL environments.
arXiv Detail & Related papers (2021-02-12T19:50:40Z) - Learn Dynamic-Aware State Embedding for Transfer Learning [0.8756822885568589]
We consider the setting where all tasks (MDPs) share the same environment dynamic except reward function.
In this setting, the MDP dynamic is a good knowledge to transfer, which can be inferred by uniformly random policy.
We observe that the binary MDP dynamic can be inferred from trajectories of any policy which avoids the need of uniform random policy.
arXiv Detail & Related papers (2021-01-06T19:07:31Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - HyperGrid: Efficient Multi-Task Transformers with Grid-wise Decomposable
Hyper Projections [96.64246471034195]
We propose textscHyperGrid, a new approach for highly effective multi-task learning.
Our method helps bridge the gap between fine-tuning and multi-task learning approaches.
arXiv Detail & Related papers (2020-07-12T02:49:16Z) - Multi-Task Reinforcement Learning with Soft Modularization [25.724764855681137]
Multi-task learning is a very challenging problem in reinforcement learning.
We introduce an explicit modularization technique on policy representation to alleviate this optimization issue.
We show our method improves both sample efficiency and performance over strong baselines by a large margin.
arXiv Detail & Related papers (2020-03-30T17:47:04Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.