cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM
- URL: http://arxiv.org/abs/2407.01574v1
- Date: Wed, 29 May 2024 15:12:19 GMT
- Title: cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM
- Authors: Gabriel Ducrocq, Lukas Grunewald, Sebastian Westenhoff, Fredrik Lindsten,
- Abstract summary: Single-particle cryo-electron microscopy (cryo EM) is a powerful tool for capturing a large number of images of a given protein.
In this paper, we introduce cryoSPHERE, a deep learning method that takes as input a nominal protein structure.
- Score: 9.887133861477233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The three-dimensional structure of a protein plays a key role in determining its function. Methods like AlphaFold have revolutionized protein structure prediction based only on the amino-acid sequence. However, proteins often appear in multiple different conformations, and it is highly relevant to resolve the full conformational distribution. Single-particle cryo-electron microscopy (cryo EM) is a powerful tool for capturing a large number of images of a given protein, frequently in different conformations (referred to as particles). The images are, however, very noisy projections of the protein, and traditional methods for cryo EM reconstruction are limited to recovering a single, or a few, conformations. In this paper, we introduce cryoSPHERE, a deep learning method that takes as input a nominal protein structure, e.g. from AlphaFold, learns how to divide it into segments, and how to move these as approximately rigid bodies to fit the different conformations present in the cryo EM dataset. This formulation is shown to provide enough constraints to recover meaningful reconstructions of single protein structures. This is illustrated in three examples where we show consistent improvements over the current state-of-the-art for heterogeneous reconstruction.
Related papers
- Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM [3.424647356090208]
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data.
CryoBench is a suite of datasets, metrics, and performance benchmarks for heterogeneous reconstruction in cryo-EM.
arXiv Detail & Related papers (2024-08-10T11:48:14Z) - FFF: Fragments-Guided Flexible Fitting for Building Complete Protein
Structures [10.682516227941592]
We propose a new method named FFF that bridges protein structure prediction and protein structure recognition with flexible fitting.
First, a multi-level recognition network is used to capture various structural features from the input 3D cryo-EM map.
Next, protein structural fragments are generated using pseudo peptide vectors and a protein sequence alignment method based on these extracted features.
arXiv Detail & Related papers (2023-08-07T15:10:21Z) - CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images [3.0828074702828623]
We propose CryoChains that encodes large deformations of biomolecules via rigid body transformation of their chains.
Our data experiments on the human GABAtextsubscriptB and heat shock protein show that CryoChains gives a biophysically-grounded quantification of the heterogeneous conformations of biomolecules.
arXiv Detail & Related papers (2023-06-12T17:57:12Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z) - Deep learning based mixed-dimensional GMM for characterizing variability
in CryoEM [0.0]
CryoEM provides direct visualization of individual macromolecules in different conformational and compositional states.
We present a machine learning algorithm to determine a conformational landscape for proteins or complexes.
We demonstrate this method on several different biomolecular systems to explore compositional and conformational changes at a range of scales.
arXiv Detail & Related papers (2021-01-25T19:05:23Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.