Mixture of neural fields for heterogeneous reconstruction in cryo-EM
- URL: http://arxiv.org/abs/2412.09420v1
- Date: Thu, 12 Dec 2024 16:26:38 GMT
- Title: Mixture of neural fields for heterogeneous reconstruction in cryo-EM
- Authors: Axel Levy, Rishwanth Raghu, David Shustin, Adele Rui-Yang Peng, Huan Li, Oliver Biggs Clarke, Gordon Wetzstein, Ellen D. Zhong,
- Abstract summary: We present Hydra, an approach that models both conformational and compositional heterogeneity fully ab initio.
We employ a new likelihood-based loss function and demonstrate the effectiveness of our approach on synthetic datasets composed of mixtures of proteins.
- Score: 29.837972881181102
- License:
- Abstract: Cryo-electron microscopy (cryo-EM) is an experimental technique for protein structure determination that images an ensemble of macromolecules in near-physiological contexts. While recent advances enable the reconstruction of dynamic conformations of a single biomolecular complex, current methods do not adequately model samples with mixed conformational and compositional heterogeneity. In particular, datasets containing mixtures of multiple proteins require the joint inference of structure, pose, compositional class, and conformational states for 3D reconstruction. Here, we present Hydra, an approach that models both conformational and compositional heterogeneity fully ab initio by parameterizing structures as arising from one of K neural fields. We employ a new likelihood-based loss function and demonstrate the effectiveness of our approach on synthetic datasets composed of mixtures of proteins with large degrees of conformational variability. We additionally demonstrate Hydra on an experimental dataset of a cellular lysate containing a mixture of different protein complexes. Hydra expands the expressivity of heterogeneous reconstruction methods and thus broadens the scope of cryo-EM to increasingly complex samples.
Related papers
- Generative modeling of protein ensembles guided by crystallographic electron densities [1.026104527280739]
We propose a non-i.i.d. ensemble guidance approach to solve this problem.
We demonstrate that it accurately recovers complicated multi-modal alternate protein backbone conformations observed in certain single crystal measurements.
arXiv Detail & Related papers (2024-12-17T00:31:59Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM [3.424647356090208]
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data.
Here, we introduce CryoBench, a suite of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM.
arXiv Detail & Related papers (2024-08-10T11:48:14Z) - cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM [9.887133861477233]
Single-particle cryo-electron microscopy (cryo EM) is a powerful tool for capturing a large number of images of a given protein.
In this paper, we introduce cryoSPHERE, a deep learning method that takes as input a nominal protein structure.
arXiv Detail & Related papers (2024-05-29T15:12:19Z) - CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images [3.0828074702828623]
We propose CryoChains that encodes large deformations of biomolecules via rigid body transformation of their chains.
Our data experiments on the human GABAtextsubscriptB and heat shock protein show that CryoChains gives a biophysically-grounded quantification of the heterogeneous conformations of biomolecules.
arXiv Detail & Related papers (2023-06-12T17:57:12Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
Cryo-electron microscopy (cryo-EM) allows for the high-resolution reconstruction of 3D structures of proteins and other biomolecules.
It is still challenging to reconstruct the continuous motions of 3D structures from noisy and randomly oriented 2D cryo-EM images.
We propose CryoFormer, a new approach for continuous heterogeneous cryo-EM reconstruction.
arXiv Detail & Related papers (2023-03-28T18:59:17Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Deep learning based mixed-dimensional GMM for characterizing variability
in CryoEM [0.0]
CryoEM provides direct visualization of individual macromolecules in different conformational and compositional states.
We present a machine learning algorithm to determine a conformational landscape for proteins or complexes.
We demonstrate this method on several different biomolecular systems to explore compositional and conformational changes at a range of scales.
arXiv Detail & Related papers (2021-01-25T19:05:23Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.