論文の概要: Unveiling and Controlling Anomalous Attention Distribution in Transformers
- arxiv url: http://arxiv.org/abs/2407.01601v2
- Date: Wed, 3 Jul 2024 16:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:53:35.271244
- Title: Unveiling and Controlling Anomalous Attention Distribution in Transformers
- Title(参考訳): 変圧器の異常注意分布の解明と制御
- Authors: Ruiqing Yan, Xingbo Du, Haoyu Deng, Linghan Zheng, Qiuzhuang Sun, Jifang Hu, Yuhang Shao, Penghao Jiang, Jinrong Jiang, Lian Zhao,
- Abstract要約: ウェイバー現象は、要素が情報への貢献に影響を与えることなく過剰な注意を吸収することを可能にする。
特定のモデルでは、位置符号化と注意パターンの違いにより、モデルによるウェイブラー要素の選択は2つの方法に分類できることがわかった。
- 参考スコア(独自算出の注目度): 8.456319173083315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of large models based on the Transformer architecture, researchers have observed an anomalous phenomenon in the Attention mechanism--there is a very high attention on the first element, which is prevalent across Transformer-based models. It is crucial to understand it for the development of techniques focusing on attention distribution, such as Key-Value (KV) Cache compression and infinite extrapolation; however, the latent cause leaves to be unknown. In this paper, we analyze such a phenomenon from the perspective of waiver phenomenon, which involves reducing the internal values of certain elements in the sequence, allowing them to absorb excess attention without affecting their contribution to information. In specific models, due to differences in positional encoding and attention patterns, we have found that the selection of waiver elements by the model can be categorized into two methods: positional-encoding-based and feature-distribution-within-elements-based.
- Abstract(参考訳): トランスフォーマーアーキテクチャに基づく大規模モデルの出現により、研究者はアテンション機構における異常現象を観測した。
キーバリュー(KV)キャッシュ圧縮や無限外挿など,注目度分布に着目した手法の開発には,それを理解することが不可欠である。
本稿では,これらの現象をウェイバー現象の観点から解析し,シーケンス内の特定の要素の内部値の低減を伴い,情報への寄与を伴わずに過剰な注意を吸収できるようにする。
特定のモデルでは、位置エンコーディングと注意パターンの違いにより、モデルによるウェイバー要素の選択は、位置エンコーディングベースと特徴分布ウィイン要素ベースという2つの方法に分類できることがわかった。
関連論文リスト
- Mind the Gap: a Spectral Analysis of Rank Collapse and Signal Propagation in Transformers [3.686808512438363]
本稿では,無作為マトリクスの観点から,テキスト分割のみの変圧器における信号伝搬について検討する。
本研究では,注目行列の2つの最大の特異値間のテクストスペクトルギャップが,ランク崩壊の原因となることを示す。
そこで本研究では,スペクトルギャップを除去することにより,広帯域におけるランク崩壊を解消する,新しい,シンプルかつ実用的な解法を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:34:18Z) - DAPE V2: Process Attention Score as Feature Map for Length Extrapolation [63.87956583202729]
我々は特徴写像としての注意を概念化し、コンピュータビジョンにおける処理方法を模倣するために畳み込み演算子を適用した。
様々な注意関係のモデルに適応できる新しい洞察は、現在のTransformerアーキテクチャがさらなる進化の可能性があることを示している。
論文 参考訳(メタデータ) (2024-10-07T07:21:49Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Noise-Free Explanation for Driving Action Prediction [11.330363757618379]
我々は, この欠陥を解消するための, 実装が容易だが効果的な方法を提案する: 平滑な騒音ノルム注意(SNNA)
変換された値ベクトルのノルムで注意を重み付け、アテンション勾配でラベル固有の信号を誘導し、入力摂動をランダムにサンプリングし、対応する勾配を平均化し、ノイズのない属性を生成する。
定性的かつ定量的な評価結果は、より明確な視覚的説明図を作成し、入力画素の重要度をランク付けする他のSOTA注意に基づく説明可能な方法と比較して、SNNAの優位性を示している。
論文 参考訳(メタデータ) (2024-07-08T19:21:24Z) - Self-attention Networks Localize When QK-eigenspectrum Concentrates [9.379890125442335]
自己認識メカニズムは、現代の機械学習で一般的である。
2つの議論が、モデルのパフォーマンスに注意を向けるローカライゼーションを結び付けている。
我々は,小さな固有スペクトルの分散が注意を局所化させることを示した。
論文 参考訳(メタデータ) (2024-02-03T09:35:53Z) - Revisiting Over-smoothing in BERT from the Perspective of Graph [111.24636158179908]
近年,トランスフォーマーモデルにおける過度に平滑化現象が視覚と言語の両方で観測されている。
層正規化はトランスフォーマーモデルにおける過度に平滑な問題において重要な役割を果たす。
異なる層からの表現を適応的に組み合わせ、出力をより多様にする階層的融合戦略を考察する。
論文 参考訳(メタデータ) (2022-02-17T12:20:52Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
トランスフォーマーベースのモデルは、その強力な能力のために自然言語処理(NLP)タスクに人気がある。
事前学習モデルの注意マップの可視化は,自己着脱機構を理解するための直接的な方法の一つである。
本研究では,sparsebert設計の指導にも適用可能な微分可能アテンションマスク(dam)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-25T14:13:44Z) - Attention that does not Explain Away [54.42960937271612]
Transformerアーキテクチャに基づくモデルは、大規模なタスクに対して競合するアーキテクチャに基づくモデルよりも精度が高い。
Transformerのユニークな特徴は、任意の距離で自由な情報の流れを可能にする自己認識機構の普遍的な応用である。
本稿では,実装が簡単で,"説明的回避"効果を避けるための理論的保証を提供する,二重正規化アテンション方式を提案する。
論文 参考訳(メタデータ) (2020-09-29T21:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。