論文の概要: A Review of Large Language Models and Autonomous Agents in Chemistry
- arxiv url: http://arxiv.org/abs/2407.01603v2
- Date: Thu, 25 Jul 2024 21:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 17:32:36.758590
- Title: A Review of Large Language Models and Autonomous Agents in Chemistry
- Title(参考訳): 化学における大規模言語モデルと自律エージェントの展望
- Authors: Mayk Caldas Ramos, Christopher J. Collison, Andrew D. White,
- Abstract要約: 大規模言語モデル(LLM)は化学において強力なツールとして登場した。
このレビューでは、化学におけるLCMの機能と、自動化による科学的発見を加速する可能性を強調している。
エージェントは新たなトピックであるので、化学以外のエージェントのレビューの範囲を広げます。
- 参考スコア(独自算出の注目度): 0.7184549921674758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as powerful tools in chemistry, significantly impacting molecule design, property prediction, and synthesis optimization. This review highlights LLM capabilities in these domains and their potential to accelerate scientific discovery through automation. We also review LLM-based autonomous agents: LLMs with a broader set of tools to interact with their surrounding environment. These agents perform diverse tasks such as paper scraping, interfacing with automated laboratories, and synthesis planning. As agents are an emerging topic, we extend the scope of our review of agents beyond chemistry and discuss across any scientific domains. This review covers the recent history, current capabilities, and design of LLMs and autonomous agents, addressing specific challenges, opportunities, and future directions in chemistry. Key challenges include data quality and integration, model interpretability, and the need for standard benchmarks, while future directions point towards more sophisticated multi-modal agents and enhanced collaboration between agents and experimental methods. Due to the quick pace of this field, a repository has been built to keep track of the latest studies: https://github.com/ur-whitelab/LLMs-in-science.
- Abstract(参考訳): 大規模言語モデル(LLM)は化学において強力なツールとして登場し、分子設計、特性予測、合成最適化に大きな影響を与えた。
このレビューでは、これらの領域におけるLLMの機能と、自動化による科学的発見を加速する可能性を強調している。
また、LLMをベースとした自律エージェントについてもレビューする: LLMは周囲の環境と対話するための、より広範なツールセットを持つ。
これらのエージェントは、紙のスクラップ、自動実験室との対面、合成計画などの様々なタスクを実行する。
エージェントは新たな話題であるので、化学以外のエージェントのレビューの範囲を広げ、あらゆる科学分野について議論する。
このレビューでは、LLMと自律エージェントの最近の歴史、現在の能力、設計について取り上げ、化学における特定の課題、機会、今後の方向性について論じる。
主な課題は、データ品質と統合、モデル解釈可能性、標準ベンチマークの必要性である。
この分野での速いペースのため、最新の研究を追跡するためにリポジトリが構築されている。
関連論文リスト
- PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes [33.293741487835824]
MLLM(Multimodal Large Language Models)は、様々な科学分野において普及している。
しかし、現在のアプローチは化学反応を理解する上での複数の分子グラフ相互作用の重要な役割を無視することが多い。
PRESTOは、事前学習戦略とデータセット構成の包括的なベンチマークを統合することで、分子-テキストのモダリティギャップを橋渡しする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-19T03:59:46Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
大規模言語モデル(LLM)は化学応用において顕著な進歩を遂げた。
しかし、コミュニティには化学に特化したLLMが欠落している。
本稿では,化学に特化した最初のLLMを特徴とする包括的フレームワークであるChemLLMを紹介する。
論文 参考訳(メタデータ) (2024-02-10T01:11:59Z) - From Words to Molecules: A Survey of Large Language Models in Chemistry [8.129759559674968]
本稿では,Large Language Models (LLM) を化学分野に組み込む際に用いられるニュアンスド方法論について考察する。
化学LLMを,その入力データのドメインとモダリティに基づいて3つの異なるグループに分類し,これらをLCMに組み込むアプローチについて議論する。
最後に,化学知識のさらなる統合,継続学習の進歩,モデル解釈可能性の向上など,有望な研究方向性を明らかにした。
論文 参考訳(メタデータ) (2024-02-02T14:30:48Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - ChemCrow: Augmenting large-language models with chemistry tools [0.9195187117013247]
大規模言語モデル(LLM)は、領域全体にわたるタスクにおいて高いパフォーマンスを示してきたが、化学に関連した問題に悩まされている。
本研究では, 有機合成, 創薬, 材料設計における課題を遂行するLLM化学剤であるChemCrowを紹介する。
我々のエージェントは、昆虫の忌避剤である3種の有機触媒の合成を自律的に計画し、実行し、新しいクロモフォアの発見を導いた。
論文 参考訳(メタデータ) (2023-04-11T17:41:13Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。