論文の概要: Deciphering the Factors Influencing the Efficacy of Chain-of-Thought: Probability, Memorization, and Noisy Reasoning
- arxiv url: http://arxiv.org/abs/2407.01687v2
- Date: Fri, 04 Oct 2024 01:01:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:08:07.930034
- Title: Deciphering the Factors Influencing the Efficacy of Chain-of-Thought: Probability, Memorization, and Noisy Reasoning
- Title(参考訳): チェーン・オブ・ワットの有効性に影響する要因の解明:確率,記憶,雑音による推論
- Authors: Akshara Prabhakar, Thomas L. Griffiths, R. Thomas McCoy,
- Abstract要約: Chain-of-Thought(CoT)プロンプトは、Large Language Models(LLM)の多段階推論能力を高めることが示されている。
CoTのプロンプト性能は,真の推論の暗黙化と確率バージョンの両方を反映していることを示す。
- 参考スコア(独自算出の注目度): 11.758019716526459
- License:
- Abstract: Chain-of-Thought (CoT) prompting has been shown to enhance the multi-step reasoning capabilities of Large Language Models (LLMs). However, debates persist about whether LLMs exhibit abstract generalization or rely on shallow heuristics when given CoT prompts. To understand the factors influencing CoT reasoning we provide a detailed case study of the symbolic reasoning task of decoding shift ciphers, where letters are shifted forward some number of steps in the alphabet. We analyze the pattern of results produced by three LLMs -- GPT-4, Claude 3, and Llama 3.1 -- performing this task using CoT prompting. By focusing on a single relatively simple task, we are able to identify three factors that systematically affect CoT performance: the probability of the task's expected output (probability), what the model has implicitly learned during pre-training (memorization), and the number of intermediate operations involved in reasoning (noisy reasoning). We show that these factors can drastically influence task accuracy across all three LLMs; e.g., when tested with GPT-4, varying the output's probability of occurrence shifts accuracy from 26% to 70%. Overall, we conclude that CoT prompting performance reflects both memorization and a probabilistic version of genuine reasoning. Code and data at this https://github.com/aksh555/deciphering_cot
- Abstract(参考訳): CoT(Chain-of-Thought)プロンプトは、LLM(Large Language Models)の多段階推論機能を強化することが示されている。
しかし、LLMが抽象的な一般化を示すのか、CoTのプロンプトが与えられたとき、浅いヒューリスティックに依存しているのかについては議論が続いている。
CoT推論に影響を及ぼす要因を理解するために、シフト暗号を復号するシンボリック推論タスクについて、アルファベットのいくつかのステップで文字を移動させる詳細なケーススタディを提供する。
我々は,3つのLCM(GPT-4,Claude 3,Llama 3.1)が生成した結果のパターンをCoTプロンプトを用いて解析する。
1つの比較的単純なタスクにフォーカスすることで、タスクの期待出力の確率(確率)、事前トレーニング(記憶)中に暗黙的に学んだこと、推論(ノイズ推論)に関わる中間操作の数(ノイズ推論)の3つの要因を体系的に特定することができる。
これらの要因は, GPT-4を用いて試験すると, 結果の精度が26%から70%に変化することが示唆された。
全体として、CoTのプロンプト性能は、真の推論の暗記と確率バージョンの両方を反映していると結論付けている。
code and data at this https://github.com/aksh555/deciphering_cot
関連論文リスト
- To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-Thought (CoT) は,大規模言語モデル (LLM) から推論能力を引き出すデファクト手法である。
私たちは、CoTが主に数学や論理学を含むタスクに強いパフォーマンス上の利点をもたらし、他のタスクよりもはるかに少ない利益をもたらすことを示しています。
論文 参考訳(メタデータ) (2024-09-18T17:55:00Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Can Separators Improve Chain-of-Thought Prompting? [10.398343318429367]
CoTプロンプトは大規模言語モデル(LLM)の推論能力を改善するためのシンプルで効果的な方法である
人間の認知にインスパイアされたCOT-SEP(COT-SEP)は,CoTプロンプトにおける各指数の最後にセパレータを戦略的に採用する手法である。
論文 参考訳(メタデータ) (2024-02-16T12:46:16Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
思考の連鎖(CoT)は、大きな言語モデルの推論能力を改善する上で重要である。
プロンプトにおけるCoTの有効性と推論ステップの長さの相関について検討した。
論文 参考訳(メタデータ) (2024-01-10T04:37:38Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Stress Testing Chain-of-Thought Prompting for Large Language Models [0.16317061277456998]
本報告では,大規模言語モデル(LLM)の多段階推論能力を向上する上で,CoT(Chain-of-Thought)の有効性について検討する。
各種タスクにおけるGPT-3の性能に及ぼすCoT次数,CoT値,CoT演算子の影響を解析した。
論文 参考訳(メタデータ) (2023-09-28T17:21:33Z) - Language Models Don't Always Say What They Think: Unfaithful
Explanations in Chain-of-Thought Prompting [43.458726163197824]
大規模言語モデル(LLM)は、最終的な出力を与える前にステップバイステップの推論を生成することで、多くのタスクにおいて強力なパフォーマンスを達成することができる。
モデル予測の真の理由を,CoT の説明が体系的に誤って表現できることが判明した。
論文 参考訳(メタデータ) (2023-05-07T22:44:25Z) - Faithful Chain-of-Thought Reasoning [51.21714389639417]
CoT(Chain-of-Thought)は言語モデル(LM)のパフォーマンスを様々な推論タスクで向上させる。
翻訳と問題解決という2つの段階を含む推論フレームワークであるFithful CoTを提案する。
このことは、推論連鎖が最終回答の忠実な説明を提供することを保証している。
論文 参考訳(メタデータ) (2023-01-31T03:04:26Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z) - Large Language Models are Better Reasoners with Self-Verification [48.534270563880845]
大規模言語モデル(LLM)は、いくつかの自然言語処理タスクにおいて強力な推論能力を示している。
思考の連鎖(CoT)を促進させるLLMは、個別のミスに非常に敏感な、多段階のプロンプトと多段階の予測を必要とする。
また,LLMにも同様な自己検証能力があることを示す。
論文 参考訳(メタデータ) (2022-12-19T15:51:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。