Resilience of the quantum critical line in the Schmid transition
- URL: http://arxiv.org/abs/2407.01699v1
- Date: Mon, 1 Jul 2024 18:12:51 GMT
- Title: Resilience of the quantum critical line in the Schmid transition
- Authors: Nicolas Paris, Luca Giacomelli, Romain Daviet, Cristiano Ciuti, Nicolas Dupuis, Christophe Mora,
- Abstract summary: Schmid predicted that a single Josephson junction coupled to a resistive environment undergoes a quantum phase transition to an insulating phase when the shunt resistance exceeds the resistance quantum $h/(4 e 2)$.
Recent measurements and theoretical studies have sparked a debate on whether the location of this transition depends on the ratio between the Josephson and the charging energies.
We demonstrate that the transition line between superconducting and insulating behavior is indeed independent of this energy ratio.
- Score: 0.35342120781147623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Schmid predicted that a single Josephson junction coupled to a resistive environment undergoes a quantum phase transition to an insulating phase when the shunt resistance $R$ exceeds the resistance quantum $h/(4 e^ 2)$. Recent measurements and theoretical studies have sparked a debate on whether the location of this transition depends on the ratio between the Josephson and the charging energies. We employ a combination of multiple innovative analytical and numerical techniques, never before explicitly applied to this problem, to decisively demonstrate that the transition line between superconducting and insulating behavior is indeed independent of this energy ratio. First, we apply field-theory renormalization group methods and find that the $\beta$ function vanishes along the critical line up to the third order in the Josephson energy. We then identify a simple fermionic model that precisely captures the low-energy physics on the critical line, regardless of the energy ratio. This conformally invariant fermionic model is verified by comparing the expected spectrum with exact diagonalization calculations of the resistively shunted Josephson junction, showing excellent agreement even for moderate system sizes. Importantly, this identification provides a rigorous non-perturbative proof that the transition line is maintained at $R=h/(4 e^ 2)$ for all ratios of Josephson to charging energies. The line is further resilient to other ultraviolet cutoffs such as the plasma frequency of the resistive environment. Finally, we implement an adiabatic approach to validate the duality at large Josephson energy.
Related papers
- Absence of a dissipative quantum phase transition in Josephson junctions: Theory [0.0]
We investigate the resistively shunted Josephson junction (RSJ) at equilibrium.
We find that shunting a junction makes it more superconducting.
We reveal that the UV cutoff of the resistor plays an unforeseen key role in these systems.
arXiv Detail & Related papers (2023-12-22T15:13:18Z) - Emergent quantum phase transition of a Josephson junction coupled to a
high-impedance multimode resonator [0.0]
We investigate the emergent criticality of a junction coupled to a multimode resonator when the number of modes is increased.
We find that the transition surprisingly stems from a level anticrossing involving not the ground state, but the first excited state.
arXiv Detail & Related papers (2023-07-12T18:13:15Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - The Josephson junction as a quantum engine [44.56439370306859]
Cooper pairs in superconducting electrodes of a Josephson junction (JJ) as an open system, coupled via Andreev scattering to external baths of electrons.
Disequilibrium between the baths generates the direct-current bias applied to the JJ.
We argue that this picture of the JJ as a quantum engine resolves open questions about the Josephson effect as an irreversible process and could open new perspectives in quantum thermodynamics and in the theory of dynamical systems.
arXiv Detail & Related papers (2023-02-09T16:51:39Z) - Improving Josephson junction reproducibility for superconducting quantum
circuits: junction area fluctuation [0.0]
Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits.
critical current $I_c$ variation of the Josephson junction, as the most important electrical parameter, needs to be minimized.
We optimized Josephson junctions fabrication process and demonstrate resistance variation of $9.8-4.4%$ and $4.8-2.3%$ across $22times22$ $mm2$ and $5times10$ $mm2$ chip areas.
arXiv Detail & Related papers (2022-10-27T10:00:24Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Quantum transport in quasi-periodic lattice systems in presence of
B\"uttiker probes [0.0]
We investigate the environment induced effects on transport properties for quasi-periodic systems by considering the B"uttiker probe approach.
We first consider voltage probe situation and study the electrical conductance properties in the linear response regime.
We extend our study and consider voltage-temperature probes to analyze the thermoelectric performance of the chain in terms of the figure of merit.
arXiv Detail & Related papers (2022-02-28T18:57:06Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.