Deepfake Audio Detection Using Spectrogram-based Feature and Ensemble of Deep Learning Models
- URL: http://arxiv.org/abs/2407.01777v1
- Date: Mon, 1 Jul 2024 20:10:43 GMT
- Title: Deepfake Audio Detection Using Spectrogram-based Feature and Ensemble of Deep Learning Models
- Authors: Lam Pham, Phat Lam, Truong Nguyen, Huyen Nguyen, Alexander Schindler,
- Abstract summary: We propose a deep learning based system for the task of deepfake audio detection.
In particular, the draw input audio is first transformed into various spectrograms.
We leverage the state-of-the-art audio pre-trained models of Whisper, Seamless, Speechbrain, and Pyannote to extract audio embeddings.
- Score: 42.39774323584976
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a deep learning based system for the task of deepfake audio detection. In particular, the draw input audio is first transformed into various spectrograms using three transformation methods of Short-time Fourier Transform (STFT), Constant-Q Transform (CQT), Wavelet Transform (WT) combined with different auditory-based filters of Mel, Gammatone, linear filters (LF), and discrete cosine transform (DCT). Given the spectrograms, we evaluate a wide range of classification models based on three deep learning approaches. The first approach is to train directly the spectrograms using our proposed baseline models of CNN-based model (CNN-baseline), RNN-based model (RNN-baseline), C-RNN model (C-RNN baseline). Meanwhile, the second approach is transfer learning from computer vision models such as ResNet-18, MobileNet-V3, EfficientNet-B0, DenseNet-121, SuffleNet-V2, Swint, Convnext-Tiny, GoogLeNet, MNASsnet, RegNet. In the third approach, we leverage the state-of-the-art audio pre-trained models of Whisper, Seamless, Speechbrain, and Pyannote to extract audio embeddings from the input spectrograms. Then, the audio embeddings are explored by a Multilayer perceptron (MLP) model to detect the fake or real audio samples. Finally, high-performance deep learning models from these approaches are fused to achieve the best performance. We evaluated our proposed models on ASVspoof 2019 benchmark dataset. Our best ensemble model achieved an Equal Error Rate (EER) of 0.03, which is highly competitive to top-performing systems in the ASVspoofing 2019 challenge. Experimental results also highlight the potential of selective spectrograms and deep learning approaches to enhance the task of audio deepfake detection.
Related papers
- Fitting Auditory Filterbanks with Multiresolution Neural Networks [4.944919495794613]
We introduce a neural audio model, named multiresolution neural network (MuReNN)
The key idea behind MuReNN is to train separate convolutional operators over the octave subbands of a discrete wavelet transform (DWT)
For a given real-world dataset, we fit the magnitude response of MuReNN to that of a well-established auditory filterbank.
arXiv Detail & Related papers (2023-07-25T21:20:12Z) - Efficient Large-scale Audio Tagging via Transformer-to-CNN Knowledge
Distillation [6.617487928813374]
We propose a training procedure for efficient CNNs based on offline Knowledge Distillation (KD) from high-performing yet complex transformers.
We provide models of different complexity levels, scaling from low-complexity models up to a new state-of-the-art performance of.483 mAP on AudioSet.
arXiv Detail & Related papers (2022-11-09T09:58:22Z) - Adaptive re-calibration of channel-wise features for Adversarial Audio
Classification [0.0]
We propose a recalibration of features using attention feature fusion for synthetic speech detection.
We compare its performance against different detection methods including End2End models and Resnet-based models.
We also demonstrate that the combination of Linear frequency cepstral coefficients (LFCC) and Mel Frequency cepstral coefficients (MFCC) using the attentional feature fusion technique creates better input features representations.
arXiv Detail & Related papers (2022-10-21T04:21:56Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - SSAST: Self-Supervised Audio Spectrogram Transformer [19.09439093130855]
We propose to pretrain the Audio Spectrogram Transformer (AST) model with joint discriminative and generative masked spectrogram patch modeling (MSPM) using unlabeled audio.
We evaluate our pretrained models on both audio and speech classification tasks including audio event classification, keyword spotting, emotion recognition, and speaker identification.
To the best of our knowledge, it is the first patch-based self-supervised learning framework in the audio and speech domain, and also the first self-supervised learning framework for AST.
arXiv Detail & Related papers (2021-10-19T07:58:28Z) - Deep Convolutional and Recurrent Networks for Polyphonic Instrument
Classification from Monophonic Raw Audio Waveforms [30.3491261167433]
Sound Event Detection and Audio Classification tasks are traditionally addressed through time-frequency representations of audio signals such as spectrograms.
Deep neural networks as efficient feature extractors has enabled the direct use of audio signals for classification purposes.
We attempt to recognize musical instruments in polyphonic audio by only feeding their raw waveforms into deep learning models.
arXiv Detail & Related papers (2021-02-13T13:44:46Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer)
In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms.
We show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
arXiv Detail & Related papers (2021-02-12T18:00:08Z) - Fast accuracy estimation of deep learning based multi-class musical
source separation [79.10962538141445]
We propose a method to evaluate the separability of instruments in any dataset without training and tuning a neural network.
Based on the oracle principle with an ideal ratio mask, our approach is an excellent proxy to estimate the separation performances of state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-10-19T13:05:08Z) - Many-to-Many Voice Transformer Network [55.17770019619078]
This paper proposes a voice conversion (VC) method based on a sequence-to-sequence (S2S) learning framework.
It enables simultaneous conversion of the voice characteristics, pitch contour, and duration of input speech.
arXiv Detail & Related papers (2020-05-18T04:02:08Z) - AutoSpeech: Neural Architecture Search for Speaker Recognition [108.69505815793028]
We propose the first neural architecture search approach approach for the speaker recognition tasks, named as AutoSpeech.
Our algorithm first identifies the optimal operation combination in a neural cell and then derives a CNN model by stacking the neural cell for multiple times.
Results demonstrate that the derived CNN architectures significantly outperform current speaker recognition systems based on VGG-M, ResNet-18, and ResNet-34 back-bones, while enjoying lower model complexity.
arXiv Detail & Related papers (2020-05-07T02:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.