論文の概要: Proposal Report for the 2nd SciCAP Competition 2024
- arxiv url: http://arxiv.org/abs/2407.01897v1
- Date: Tue, 2 Jul 2024 02:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:03:34.737182
- Title: Proposal Report for the 2nd SciCAP Competition 2024
- Title(参考訳): 第2回SciCAPコンペティション2024開催報告
- Authors: Pengpeng Li, Tingmin Li, Jingyuan Wang, Boyuan Wang, Yang Yang,
- Abstract要約: 本稿では補助情報を用いた文書要約手法を提案する。
提案実験は,高品質なOCRデータを活用することで,記述対象に関するコンテンツを効率的に要約できることを実証した。
提案手法は,2024年のSciCAPコンペティションにおいて,長字幕と短字幕で4.33点,短字幕で4.66点のスコアを得た。
- 参考スコア(独自算出の注目度): 20.58804817441756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a method for document summarization using auxiliary information. This approach effectively summarizes descriptions related to specific images, tables, and appendices within lengthy texts. Our experiments demonstrate that leveraging high-quality OCR data and initially extracted information from the original text enables efficient summarization of the content related to described objects. Based on these findings, we enhanced popular text generation model models by incorporating additional auxiliary branches to improve summarization performance. Our method achieved top scores of 4.33 and 4.66 in the long caption and short caption tracks, respectively, of the 2024 SciCAP competition, ranking highest in both categories.
- Abstract(参考訳): 本稿では,補助情報を用いた文書要約手法を提案する。
このアプローチは、長文内の特定の画像、表、付録に関する記述を効果的に要約する。
本実験は,高品質なOCRデータとオリジナルテキストから抽出した情報を有効利用することにより,記述対象に関するコンテンツを効率的に要約できることを実証する。
これらの結果に基づき,要約性能を向上させるために補助的分岐を付加することにより,人気テキスト生成モデルを改良した。
両カテゴリーで上位となった2024年のSciCAPコンペティションにおいて,長字幕と短字幕で4.33点,短字幕で4.66点を達成した。
関連論文リスト
- Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - The Solution for the CVPR2024 NICE Image Captioning Challenge [2.614188906122931]
本報告では,2024 NICEのトピック1ゼロショット画像キャプションに対する解法について紹介する。
論文 参考訳(メタデータ) (2024-04-19T09:32:16Z) - The Solution for the ICCV 2023 1st Scientific Figure Captioning Challenge [19.339645217996235]
本稿では,紙の数字に対して生成されたキャプションの品質を改善するためのソリューションを提案する。
最終テストでは4.49点で1位にランクインした。
論文 参考訳(メタデータ) (2024-03-26T03:03:50Z) - Rank Your Summaries: Enhancing Bengali Text Summarization via
Ranking-based Approach [0.0]
本稿では,単純かつ効果的なランキングベースアプローチを用いて,与えられたテキストの最も正確かつ情報的な要約を特定することを目的とする。
事前学習した4つの要約モデルを用いて要約を生成し、次いでテキストランキングアルゴリズムを適用して最も適した要約を識別する。
実験結果から, 事前学習したトランスモデルの強度を利用して, ベンガル文字要約の精度と有効性を大幅に向上させることが示唆された。
論文 参考訳(メタデータ) (2023-07-14T15:07:20Z) - ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich
Document Images [198.35937007558078]
大会は2022年12月30日に開かれ、2023年3月24日に閉幕した。
トラック1には35人の参加者と91人の有効な応募があり、トラック2には15人の参加者と26人の応募がある。
提案手法の性能によると, 複雑なシナリオやゼロショットシナリオにおいて, 期待される情報抽出性能にはまだ大きなギャップがあると考えられる。
論文 参考訳(メタデータ) (2023-06-05T22:20:52Z) - Exploiting Summarization Data to Help Text Simplification [50.0624778757462]
テキスト要約とテキスト単純化の類似性を解析し,要約データを利用して単純化を行った。
我々はこれらのペアをSum4Simp (S4S) と命名し,S4Sが高品質であることを示す人間評価を行った。
論文 参考訳(メタデータ) (2023-02-14T15:32:04Z) - COLO: A Contrastive Learning based Re-ranking Framework for One-Stage
Summarization [84.70895015194188]
コントラスト学習に基づく一段階要約フレームワークであるCOLOを提案する。
COLOはCNN/DailyMailベンチマークの1段階システムの抽出と抽象化結果を44.58と46.33ROUGE-1スコアに引き上げた。
論文 参考訳(メタデータ) (2022-09-29T06:11:21Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
そこで本稿では,これらの手法を用いて呼の要約を生成し,客観的に評価することにより,実験的な比較を行った。
TopicSum と Lead-N は他の要約法よりも優れており,BERTSum は主観的評価と客観的評価の両方で比較的低いスコアを得た。
論文 参考訳(メタデータ) (2022-09-06T13:16:02Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - RetrievalSum: A Retrieval Enhanced Framework for Abstractive
Summarization [25.434558112121778]
本稿では,高密度Retriever と Summarizer を組み合わせた新しい検索強化抽象要約フレームワークを提案する。
提案手法は,複数のドメインにまたがる広範囲な要約データセットと,BERTとBARTの2つのバックボーンモデルで検証する。
その結果, ROUGE-1 スコアの1.384.66 倍の精度向上が得られた。
論文 参考訳(メタデータ) (2021-09-16T12:52:48Z) - Topic Modeling Based Extractive Text Summarization [0.0]
本稿では,潜在トピックに基づいて内容をクラスタリングすることで,テキストを要約する新しい手法を提案する。
我々は、テキスト要約へのアプローチにおいて、より使用量が少なく挑戦的なWikiHowデータセットを活用している。
論文 参考訳(メタデータ) (2021-06-29T12:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。