A Method to Facilitate Membership Inference Attacks in Deep Learning Models
- URL: http://arxiv.org/abs/2407.01919v1
- Date: Tue, 2 Jul 2024 03:33:42 GMT
- Title: A Method to Facilitate Membership Inference Attacks in Deep Learning Models
- Authors: Zitao Chen, Karthik Pattabiraman,
- Abstract summary: We demonstrate a new form of membership inference attack that is strictly more powerful than prior art.
Our attack empowers the adversary to reliably de-identify all the training samples.
We show that the models can effectively disguise the amplified membership leakage under common membership privacy auditing.
- Score: 5.724311218570013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern machine learning (ML) ecosystems offer a surging number of ML frameworks and code repositories that can greatly facilitate the development of ML models. Today, even ordinary data holders who are not ML experts can apply off-the-shelf codebase to build high-performance ML models on their data, many of which are sensitive in nature (e.g., clinical records). In this work, we consider a malicious ML provider who supplies model-training code to the data holders, does not have access to the training process, and has only black-box query access to the resulting model. In this setting, we demonstrate a new form of membership inference attack that is strictly more powerful than prior art. Our attack empowers the adversary to reliably de-identify all the training samples (average >99% attack TPR@0.1% FPR), and the compromised models still maintain competitive performance as their uncorrupted counterparts (average <1% accuracy drop). Moreover, we show that the poisoned models can effectively disguise the amplified membership leakage under common membership privacy auditing, which can only be revealed by a set of secret samples known by the adversary. Overall, our study not only points to the worst-case membership privacy leakage, but also unveils a common pitfall underlying existing privacy auditing methods, which calls for future efforts to rethink the current practice of auditing membership privacy in machine learning models.
Related papers
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Chameleon: Increasing Label-Only Membership Leakage with Adaptive
Poisoning [8.084254242380057]
Membership Inference (MI) attacks seek to determine whether a particular data sample was included in a model's training dataset.
We show that existing label-only MI attacks are ineffective at inferring membership in the low False Positive Rate regime.
We propose a new attack Chameleon that leverages a novel adaptive data poisoning strategy and an efficient query selection method.
arXiv Detail & Related papers (2023-10-05T18:46:27Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
This article presents a review of recent machine unlearning techniques, verification mechanisms, and potential attacks.
We highlight emerging challenges and prospective research directions.
We aim for this paper to provide valuable resources for integrating privacy, equity, andresilience into ML systems.
arXiv Detail & Related papers (2023-05-12T14:28:02Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning (FL) is a setting for training machine learning models in distributed environments.
We propose a novel method, CANIFE, that uses carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round.
arXiv Detail & Related papers (2022-10-06T13:30:16Z) - On the Evaluation of User Privacy in Deep Neural Networks using Timing
Side Channel [14.350301915592027]
We identify and report a novel data-dependent timing side-channel leakage (termed Class Leakage) in Deep Learning (DL) implementations.
We demonstrate a practical inference-time attack where an adversary with user privilege and hard-label blackbox access to an ML can exploit Class Leakage.
We develop an easy-to-implement countermeasure by making a constant-time branching operation that alleviates the Class Leakage.
arXiv Detail & Related papers (2022-08-01T19:38:16Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Machine Learning Security against Data Poisoning: Are We There Yet? [23.809841593870757]
This article reviews data poisoning attacks that compromise the training data used to learn machine learning models.
We discuss how to mitigate these attacks using basic security principles, or by deploying ML-oriented defensive mechanisms.
arXiv Detail & Related papers (2022-04-12T17:52:09Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Privacy Analysis of Deep Learning in the Wild: Membership Inference
Attacks against Transfer Learning [27.494206948563885]
We present the first systematic evaluation of membership inference attacks against transfer learning models.
Experiments on four real-world image datasets show that membership inference can achieve effective performance.
Our results shed light on the severity of membership risks stemming from machine learning models in practice.
arXiv Detail & Related papers (2020-09-10T14:14:22Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.