論文の概要: Chemical Shift Encoding based Double Bonds Quantification in Triglycerides using Deep Image Prior
- arxiv url: http://arxiv.org/abs/2407.01926v1
- Date: Tue, 2 Jul 2024 03:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 16:53:49.167667
- Title: Chemical Shift Encoding based Double Bonds Quantification in Triglycerides using Deep Image Prior
- Title(参考訳): 深部画像を用いたトリグリセリドの化学シフトエンコーディングに基づく二重結合定量
- Authors: Chaoxing Huang, Ziqiang Yu, Zijian Gao, Qiuyi Shen, Queenie Chan, Vincent Wai-Sun Wong, Winnie Chiu-Wing Chu, Weitian Chen,
- Abstract要約: 本研究では, 化学シフトエンコードされたマルチエコ勾配エコー画像からトリグリセリド二重結合をネットワークトレーニングなしで定量化する深層学習法について検討した。
信号制約に基づいたコスト関数を用いて、ニューラルネットワークを1つのデータセットで反復的に更新する。
その結果,Pearson相関係数は0.96。
- 参考スコア(独自算出の注目度): 1.5933094380194248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study evaluated a deep learning-based method using Deep Image Prior (DIP) to quantify triglyceride double bonds from chemical-shift encoded multi-echo gradient echo images without network training. We employed a cost function based on signal constraints to iteratively update the neural network on a single dataset. The method was validated using phantom experiments and in vivo scans. Results showed close alignment between measured and reference double bond values, with phantom experiments yielding a Pearson correlation coefficient of 0.96 (p = .0005). In vivo results demonstrated good agreement in subcutaneous fat. We conclude that Deep Image Prior shows feasibility for quantifying double bonds and fatty acid content from chemical-shift encoded multi-echo MRI.
- Abstract(参考訳): 本研究では,Deep Image Prior (DIP) を用いた深層学習による化学シフト符号化多面勾配エコー画像からのトリグリセリド二重結合の定量化について検討した。
信号制約に基づいたコスト関数を用いて、ニューラルネットワークを1つのデータセットで反復的に更新する。
本法はファントム実験と生体内スキャンを用いて検証した。
結果は測定値と基準二重結合値の密接な一致を示し、ファントム実験によりピアソン相関係数は 0.96 (p = .0005) となった。
In vivoでは皮下脂肪が良好であった。
Deep Image Priorは, 化学シフト型多面体MRIから二重結合および脂肪酸含有量を定量化できる可能性が示唆された。
関連論文リスト
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - Intra-video Positive Pairs in Self-Supervised Learning for Ultrasound [65.23740556896654]
自己教師付き学習 (SSL) は, 医療画像におけるラベル付きデータの健全性に対処するための戦略である。
本研究では,同じBモード超音波映像をSSLのペアとして用いた近位画像の利用効果について検討した。
この手法は、従来の超音波特異的比較学習法の平均検査精度を新型コロナウイルスの分類で上回り、IVPP(Intra-Video Positive Pairs)と命名された。
論文 参考訳(メタデータ) (2024-03-12T14:57:57Z) - Uncertainty Estimation in Contrast-Enhanced MR Image Translation with
Multi-Axis Fusion [6.727287631338148]
我々は,新しいモデル不確実性定量化手法であるマルチ軸核融合(MAF)を提案する。
提案手法は,T1,T2,T2-FLAIRスキャンに基づくコントラスト強調T1強調画像の合成に応用される。
論文 参考訳(メタデータ) (2023-11-20T20:09:48Z) - Moving beyond simulation: data-driven quantitative photoacoustic imaging
using tissue-mimicking phantoms [1.5006258585503878]
実験的に良好な画像ファントムとそのデジタル双生児のコレクションを紹介する。
この第1種ファントムデータセットは、吸収係数のピクセルワイズ推定のための実験データに基づくU-Netの教師付きトレーニングを可能にする。
シミュレーションデータによるトレーニングは, シミュレーションと実験の間の領域ギャップを補強し, 評価の成果とバイアスをもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-11T19:12:30Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
本稿では,教師付きディープラーニング(DL)トレーニングの適用のためのラベル付きデータを生成する手法を提案する。
画像合成はラベル変形とラベルから画像への変換からなる。
心臓MRI画像のデータベースを多様化・拡張する手法として,このようなアプローチが有効であることを示す。
論文 参考訳(メタデータ) (2022-09-09T10:17:49Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Compressed Sensing for Photoacoustic Computed Tomography Using an
Untrained Neural Network [1.7237160821929758]
光音響(PA)CT(PACT)は様々な臨床応用において大きな可能性を秘めている。
測定されたチャンネルの数を減らしたり、検出されたビューを制限すると、アーティファクトやサイドローブが画像を汚染する可能性がある。
本稿では,未学習ニューラルネットワークを用いたPACTの圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:01:58Z) - Label-Free Segmentation of COVID-19 Lesions in Lung CT [17.639558085838583]
ピクセルレベルの異常モデルを用いて,CTで新型コロナウイルスの病変を分類するためのラベルフリーアプローチを提案する。
我々のモデリングは、気管と血管の一部が、病変が属する高強度範囲にあり、強いパターンを示すという観察に着想を得たものである。
実験では,NormNetの有効性を3つの異なるデータセットで検証した。
論文 参考訳(メタデータ) (2020-09-08T12:38:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z) - Spectrum Translation for Cross-Spectral Ocular Matching [59.17685450892182]
バイオメトリックスでは、特に眼領域において、クロススペクトル検証が大きな問題となっている。
近赤外画像と視覚光画像のスペクトル変換におけるコンディショナル・ディバイサル・ネットワークの利用について検討した。
論文 参考訳(メタデータ) (2020-02-14T19:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。